17.3 Dynamic Multilevel Indexes Using B-Trees and B*-Trees

and pje,s, we should reduce the block size by the amount of space needed for all such
information. The next example illustrates how we can calculate the number of
entries in a B*-tree.

Example 7. Suppose that we construct a B*-tree on the field in Example 6. To
calculate the approximate number of entries in the B*-tree, we assume that each
node is 69% full. On the average, each internal node will have 34 * 0.69 or approxi-
mately 23 pointers, and hence 22 values. Each leaf node, on the average, will hold
0.69 * Prear = 0.69 * 31 or approximately 21 data record pointers. A B-tree will have
the following average number of entries at each level:

Root: 1 node 22 key entries 23 pointers
Level 1: 23 nodes 506 key entries 529 pointers
Level 2: 529 nodes 11,638 key entries 12,167 pointers

Leaf level: 12,167 nodes 255,507 data record pointers

For the block size, pointer size, and search field size as in Example 6, a three-level
B™-tree holds up to 255,507 record pointers, with the average 69% occupancy of
nodes. Note that we considered the leaf node differently from the nonleaf nodes
and computed the data pointers in the leaf node to be 12,167 * 21 based on 69%
occupancy of the leaf node, which can hold 31 keys with data pointers. Compare
this to the 65,535 entries for the corresponding B-tree in Example 5. Because a
B-tree includes a data/record pointer along with each search key at all levels of
the tree, it tends to accommodate less number of keys for a given number of
index levels. This is the main reason that B*-trees are preferred to B-trees as
indexes to database files. Most DBMSs, such as Oracle, are creating all indexes as
B'-trees.

Search, Insertion, and Deletion with B*-Trees. Algorithm 17.2 outlines the
procedure using the B*-tree as the access structure to search for a record. Algo-
rithm 17.3 illustrates the procedure for inserting a record in a file with a B"-tree
access structure. These algorithms assume the existence of a key search field, and
they must be modified appropriately for the case of a B™-tree on a nonkey field. We
illustrate insertion and deletion with an example.

Algorithm 17.2. Searching for a Record with Search Key Field Value K, Using
a B*-Tree

n < block containing root node of B*-tree;
read block n;
while (n is not a leaf node of the B*-tree) do
begin
g <— number of tree pointers in node n;
if K< n.K] (*n.K; refers to the ith search field value in node n*)
then n <— n.P; (*n.P; refers to the ith tree pointer in node n*)
else if K> n.Ky_;
then n < n.P,

625

626 Chapter 17 Indexing Structures for Files and Physical Database Design

else begin
search node n for an entry / such that n.K;_; <K <n.Kj;
n<n.pP;
end;
read block n
end;
search block n for entry (K, Pr) with K= Kj; (* search leaf node *)
if found

then read data file block with address Pr; and retrieve record
else the record with search field value Kis not in the data file;

Algorithm 17.3. Inserting a Record with Search Key Field Value K in a
B*-Tree of Order p

n < block containing root node of B*-tree;
read block n; set stack S to empty;
while (n is not a leaf node of the B*-tree) do
begin
push address of n on stack S;
(*stack S holds parent nodes that are needed in case of split*)
g <— number of tree pointers in node n;
if K<n.Kj (*n.K; refers to the ith search field value in node n*)
then n <— n.P; (*n.P; refers to the ith tree pointer in node n*)
else if K<— n.K,_q
then n <— n.P,

else begin
search node n for an entry i such that n.Ki_; < K <n.Kj
n < n.P;
end;
read block n
end;
search block n for entry (K;,Pr) with K= Kj; (*search leaf node n*)
if found

then record already in file; cannot insert
else (*insert entry in B*-tree to point to record*)
begin
create entry (K, Pr) where Pr points to the new record;
if leaf node n is not full
then insert entry (K, Pr) in correct position in leaf node n
else begin (*leaf node n is full with pje, record pointers; is split*)
copy n to temp (*temp is an oversize leaf node to hold extra entries*);
insert entry (K, Pr) in temp in correct position;
(*temp now holds pies + 1 entries of the form (K, Pr)*)
new <— a new empty leaf node for the tree; new.Pgy = N.Prext ;
j% |_(pleaf+ 1)/2 —l ;
n < first j entries in temp (up to entry (Kj, Pr)); n.Phex; <— new;

17.3 Dynamic Multilevel Indexes Using B-Trees and B*-Trees

new <— remaining entries in temp; K <— K ;

(*now we must move (K, new) and insert in parent internal node;
however, if parent is full, split may propagate*)

finished «— false;

repeat

if stack S is empty
then (¢<—no parent node; new root node is created for the tree*)

begin
root <— a new empty internal node for the tree;
root <— <n, K, new>; finished < true;

else begin

end
end
until finished
end;
end;

n < pop stack S;
if internal node n is not full

then
begin (*parent node not full; no split*)
insert (K, new) in correct position in internal node n;
finished < true
end
else begin (*internal node n is full with p tree pointers;
overflow condition; node is split*)
copy n to temp (*temp is an oversize internal node*);
insert (K, new) in temp in correct position;
(*temp now has p + 1 tree pointers*)
new <— a new empty internal node for the tree;
jLip+1)2l;
n <— entries up to tree pointer P; in temp;
(*n contains <Py, K1, Py, Ky, ..., Pi_1, Ki—1, P >%)
new <— entries from tree pointer P,y in temp;
(*new contains < Pyy, Kip1, -y Ko—1, Poy Koy Pp1>%)
K< K;
(*now we must move (K, new) and insert in
parentinternal node*)

Figure 17.12 illustrates insertion of records in a B™-tree of order p = 3 and pje,¢ = 2. First,
we observe that the root is the only node in the tree, so it is also a leaf node. As soon as
more than one level is created, the tree is divided into internal nodes and leaf nodes.
Notice that every key value must exist at the leaf level, because all data pointers are at the
leaf level. However, only some values exist in internal nodes to guide the search. Notice
also that every value appearing in an internal node also appears as the rightmost value in
the leaf level of the subtree pointed at by the tree pointer to the left of the value.

627

628 Chapter 17 Indexing Structures for Files and Physical Database Design

Figure 17.12
An example of insertion in a B-tree with p = 3 and pjeas = 2.

Insertion sequence: 8,5,1,7,3,12,9,6

n ~<e—nsert 1: overflow (new level)

|Z| Tree node pointer

|E| Data pointer

é
o

=]
o]
El
=
]
g
=

~e—Insert 7 Null tree pointer

Y

Insert 3: overflow
(split) *—r

o]

Insert 12: overflow (split, propagates,
new level)

:

\
w1~ [7]e] [e]o]

[}

8
o]
8
B
Y
El El El H
JE = E) = @ E = =E (@ E
\i
]
©
8
o]
\i

El
= |2

<
-

-
-

[]

Insert 9
Y w—l

12]o]

-g—e

[«]

——e

-

* Y

1= [7lo] [8]o] |ep>{[o]o] [12]o]

[11o] [8]o]|-

Y

Insert 6: overflow (split, propagates)

-
-

=]

L6lo] [7[o]|+r=|[8]o] = [e]o] [12]o]

B
o]
]
El

]
(o]
Bl

r

17.3 Dynamic Multilevel Indexes Using B-Trees and B*-Trees

When a leaf node is full and a new entry is inserted there, the node overflows and
must be split. The first j = [((jeas + 1)/2)Tentries in the original node are kept there,
and the remaining entries are moved to a new leaf node. The jth search value is
replicated in the parent internal node, and an extra pointer to the new node is cre-
ated in the parent. These must be inserted in the parent node in their correct
sequence. If the parent internal node is full, the new value will cause it to overflow
also, so it must be split. The entries in the internal node up to Pi—the jth tree pointer
after inserting the new value and pointer, where j = |_((p + 1)/2)J—are kept, whereas the
jth search value is moved to the parent, not replicated. A new internal node will hold the
entries from Pj,; to the end of the entries in the node (see Algorithm 17.3). This
splitting can propagate all the way up to create a new root node and hence a new
level for the B*-tree.

Figure 17.13 illustrates deletion from a B*-tree. When an entry is deleted, it is
always removed from the leaf level. If it happens to occur in an internal node, it
must also be removed from there. In the latter case, the value to its left in the leaf
node must replace it in the internal node because that value is now the rightmost
entry in the subtree. Deletion may cause underflow by reducing the number of
entries in the leaf node to below the minimum required. In this case, we try to find
a sibling leaf node—a leaf node directly to the left or to the right of the node with
underflow—and redistribute the entries among the node and its sibling so that
both are at least half full; otherwise, the node is merged with its siblings and the
number of leaf nodes is reduced. A common method is to try to redistribute
entries with the left sibling; if this is not possible, an attempt to redistribute with
the right sibling is made. If this is also not possible, the three nodes are merged
into two leaf nodes. In such a case, underflow may propagate to internal nodes
because one fewer tree pointer and search value are needed. This can propagate
and reduce the tree levels.

Notice that implementing the insertion and deletion algorithms may require par-
ent and sibling pointers for each node, or the use of a stack as in Algorithm 17.3.
Each node should also include the number of entries in it and its type (leaf or
internal). Another alternative is to implement insertion and deletion as recursive
procedures.'?

Variations of B-Trees and B*-Trees. To conclude this section, we briefly men-
tion some variations of B-trees and B*-trees. In some cases, constraint 5 on the
B-tree (or for the internal nodes of the B*-tree, except the root node), which
requires each node to be at least half full, can be changed to require each node to be
at least two-thirds full. In this case the B-tree has been called a B*-tree. In general,
some systems allow the user to choose a fill factor between 0.5 and 1.0, where the
latter means that the B-tree (index) nodes are to be completely full. It is also possi-
ble to specify two fill factors for a B*-tree: one for the leaf level and one for the
internal nodes of the tree. When the index is first constructed, each node is filled up

"3For more details on insertion and deletion algorithms for B*-trees, consult Ramakrishnan and
Gehrke (2003).

629

630 Chapter 17 Indexing Structures for Files and Physical Database Design

Deletion sequence: 5,12, 9

?
v
¢
O
(o)}
J
©
-

Delete 5 lo| 7

;
é
-——o
(o]
?
-
©
q

-t L] - -1 2]

Delete 12: underflow

¢7—o 7 ¢ (redistribute)

y
P
-
o
?
|
™
q

o= [7]e] ™~ T~

Delete 9: underflow

7 6 |e ¢ (merge with left, redistribute)
I

T 7 .
| l
7)o . ~([8]c]

S

Figure 17.13
An example of deletion from a B*-tree.

\i

to approximately the fill factors specified. Some investigators have suggested relax-
ing the requirement that a node be half full, and instead allow a node to become
completely empty before merging, to simplify the deletion algorithm. Simulation
studies show that this does not waste too much additional space under randomly
distributed insertions and deletions.

