
ADVANCED WEB TECHNOLOGIES

Iosif Polenakis

PhD Candidate,

Department of Computer Science and Engineering,

University of Ioannina.

email: ipolenak@cs.uoi.gr, tel.: 2651008831

XML BASICS

2

 XML: EXtensible Markup Language

XML BASICS

3

 XML: EXtensible Markup Language

 Main Purpose → Data Definition

XML BASICS

4

 XML: EXtensible Markup Language

 Main Purpose → Data Definition

 User Defined Tags → Effectively Parsing Data

XML BASICS

5

 XML: EXtensible Markup Language

 Main Purpose → Data Definition

 User Defined Tags → Effectively Parsing Data

 Application:

o XML aims on Transferring, Storing and Describing Data

o Data Interconnection between web entities (i.e., services)

o Unique Type Interpetation

XML BASICS

6

 XML: EXtensible Markup Language

 Example

<?xml version="1.0"?

encoding=“UTF-8”]

standalone=“yes”] >

<package packagerversion="1.4.0a4">

<name> Services_Trackback</name>

<channel>pear.php.net</channel>

</package>

XML BASICS

7

 XML: Shapes of XML

Key Insights :

 Tag

A tag is a markup construct that begins with < and ends with />

as follows:

o start-tag, such as <section>;

o end-tag, such as </section>;

o empty-element tag, such as <line-break />

XML BASICS

8

 XML: Shapes of XML

Key Insights :

 Element

An element is a logical document component that either begins with

a start-tag and ends with a matching end-tag or consists only of an

empty-element tag. The characters between the start-tag and end-tag,

if any, are the element's content, and may contain markup, including

other elements, which are called child elements.

<greeting>Hello, world!</greeting>. Another is <line-break />.

XML BASICS

9

 XML: Shapes of XML

Key Insights :

 Attribute

An attribute is a markup construct consisting of a name–value pair

that exists within a start-tag or empty-element tag. The names of the

attributes and their values are defined inside the start-tags.

An XML attribute can only have a single value and each attribute can

appear at most once on each element. In the common situation

where a list of multiple values is desired, this must be done by

encoding the list into a well-formed XML attribute with some

format beyond what XML defines itself.

XML BASICS

10

 XML: Shapes of XML

Key Insights :

 Namespaces

An XML namespace is declared using the reserved XML

attribute xmlns or xmlns:prefix, the value of which must be a

valid namespace name.

For example, the following declaration maps the "xhtml:" prefix to

the XHTML namespace:

xmlns:xhtml=“http://www.w3.org/1999/xhtml”

XML BASICS

11

 XML: Shapes of XML

Key Insights :

 Namespaces

Any element or attribute whose name starts with the prefix "xhtml:"

is considered to be in the XHTML namespace, if it or an ancestor

has the above namespace declaration. It is also possible to declare a

default namespace → xmlns=“http://www.w3.org/1999/xhtml”

o In this case, any element without a namespace prefix is

considered to be in the XHTML namespace, if it or an ancestor

has the above default namespace declaration.

Attributes are never subject to the default namespace.

An attribute without an explicit namespace prefix is considered not

to be in any namespace.

XML BASICS

12

 XML: Shapes of XML

The XML Syntax

 EXACTLY ONE Root Element

XML BASICS

13

 XML: Shapes of XML

The XML Syntax

 EXACTLY ONE Root Element

 Child Elements

o Other elements on the same level (siblings)

o Other elements on nested levels (parent-child relations)

o Text/Empty Elements etc…

o Definitions start ONLY with character (except “xml…”)

o Further info about element can be stored as:

 Attribute (metadata)

 child element

XML BASICS

14

 XML: Shapes of XML

XML Basic Rules …

XML BASICS

15

 XML: Shapes of XML

XML Basic Rules …

 Root element (encapsulates all tags)

<package></package>

XML BASICS

16

 XML: Shapes of XML

XML Basic Rules …

 Root element (encapsulates all tags)

<package></package>

 Case sensitive (<Name></name> → WRONG!!!)

XML BASICS

17

 XML: Shapes of XML

Right syntax on XML Document at a glance:

 Only one Root Element is defined inside the document,

 Elements are Children of Root Element,

 Tags are properly defined (no unclosed tags),

 Tags are properly closed (XML is case sensitive),

 Elements follow a proper hierarchy,

 Right syntax on elements’ definitions.

XML BASICS

18

 XML: Shapes of XML

Right syntax on XML Document:

 The document contains only properly encoded legal

Unicode characters.

 None of the special syntax characters such

as < and & appear except when performing their

markup-delineation roles.

 The start-tag, end-tag, and empty-element tag that

delimit elements are correctly nested, with none

missing and none overlapping.

Well-formed

XML BASICS

19

 XML: Shapes of XML

Right syntax on XML Document:

 Tag names are case-sensitive; the start-tag and end-tag

must match exactly.

 Tag names cannot contain any of the

characters !"#$%&'()*+,/;<=>?@[\]^`{|}~, nor a space

character, and cannot begin with "-", ".", or a numeric digit.

 A single root element contains all the other elements.

Well-formed

XML BASICS

20

 XML: Shapes of XML

The XML Document Structure

<?xml version="1.0"?>

<xsd:schemaxmlns:xsd=“http://www.w3.org/2001/XMLSchema”

targetNamespace=“http://www.books.org”

xmlns=“http://www.books.org”

elementFormDefault="qualified">

<xsd:element name="Title" type="xsd:string"/>

<xsd:element name="Author" type="xsd:string"/>

<xsd:element name="Date" type="xsd:string"/>

<xsd:element name="ISBN" type="xsd:string"/>

<xsd:element name="Publisher" type="xsd:string"/>

</xsd:schema>

XML BASICS

21

 XML: Shapes of XML

The XML Document Structure

<?xml version="1.0"?>

<xsd:schemaxmlns:xsd=“http://www.w3.org/2001/XMLSchema”

targetNamespace=“http://www.books.org”

xmlns=“http://www.books.org”

elementFormDefault="qualified">

<xsd:element name="Title" type="xsd:string"/>

<xsd:element name="Author" type="xsd:string"/>

<xsd:element name="Date" type="xsd:string"/>

<xsd:element name="ISBN" type="xsd:string"/>

<xsd:element name="Publisher" type="xsd:string"/>

</xsd:schema>

XML BASICS

22

 XML: Shapes of XML

The XML Document Structure

<?xml version="1.0"?>

<xsd:schemaxmlns:xsd=“http://www.w3.org/2001/XMLSchema”

targetNamespace=“http://www.books.org”

xmlns=“http://www.books.org”

elementFormDefault="qualified">

<xsd:element name="Title" type="xsd:string"/>

<xsd:element name="Author" type="xsd:string"/>

<xsd:element name="Date" type="xsd:string"/>

<xsd:element name="ISBN" type="xsd:string"/>

<xsd:element name="Publisher" type="xsd:string"/>

</xsd:schema>

XML BASICS

23

 XML: Shapes of XML

The XML Document Structure

<?xml version="1.0"?>

<xsd:schemaxmlns:xsd=“http://www.w3.org/2001/XMLSchema”

targetNamespace=“http://www.books.org”

xmlns=“http://www.books.org”

elementFormDefault="qualified">

<xsd:element name="Title" type="xsd:string"/>

<xsd:element name="Author" type="xsd:string"/>

<xsd:element name="Date" type="xsd:string"/>

<xsd:element name="ISBN" type="xsd:string"/>

<xsd:element name="Publisher" type="xsd:string"/>

</xsd:schema>

Child

Elements

Parent

Element

XML BASICS

24

 XML: Shapes of XML

The XML Document Structure

<?xml version="1.0"?>

<xsd:schemaxmlns:xsd=“http://www.w3.org/2001/XMLSchema”

targetNamespace=“http://www.books.org”

xmlns=“http://www.books.org”

elementFormDefault="qualified">

<xsd:element name="Title" type="xsd:string"/>

<xsd:element name="Author" type="xsd:string"/>

<xsd:element name="Date" type="xsd:string"/>

<xsd:element name="ISBN" type="xsd:string"/>

<xsd:element name="Publisher" type="xsd:string"/>

</xsd:schema>

Parent

Element

Child

ElementsR
o

o
t

E
le

m
en

t

S
ib

li
n

gs

XML BASICS

25

 XML: Shapes of XML

XML Schemas and Validation

 An XML document contains a reference to

a Document Type Definition (DTD), ensuring that its

elements and attributes are declared in that DTD and

follow the grammatical rules for them that the DTD

specifies.

 XML processors are classified as validating or non-

validating depending on whether or not they check

XML documents for validity. A processor that

discovers a validity error must be able to report it, but

may continue normal processing.

XML BASICS

26

 XML: Shapes of XML

XML Schemas and Validation

 A DTD is an example of a schema or grammar.

A schema languages typically constrain the set of

elements that may be used in a document, which

attributes may be applied to them, the order in which

they may appear, and the allowable parent/child

relationships.

XML BASICS

27

 XML: Shapes of XML

Document Type Definition (DTD)

 The oldest schema language for XML.

DTDs have the following benefits:

o Support is ubiquitous due to its inclusion in the XML 1.0 standard.

o Present more information in a single screen.

o Define a document type rather than the types used

by a namespace, thus grouping all constraints for a document in a single

collection.

XML BASICS

28

 XML: Shapes of XML

Document Type Definition (DTD)

 The oldest schema language for XML.

DTDs have the following limitations:

o They have no explicit support for newer features of XML,

most importantly namespaces.

o They lack expressiveness and readability.

There are certain structures that cannot be expressed with

regular grammars as DTDs only support basic data-types, using syntax

based on regular expression syntax, to describe the schema.

XML BASICS

29

 XML: Shapes of XML

Document Type Definition (DTD) Internal

XML BASICS

30

 XML: Shapes of XML

Document Type Definition (DTD) External

XML BASICS

31

 XML: Shapes of XML

XML Schema Definition (XSD)

 A newer schema language, described by the W3C as the

successor of DTDs, is XML Schema, often referred as

(XML Schema Definition).

 XSDs are far more powerful than DTDs in describing

XML languages.

XML BASICS

32

 XML: Shapes of XML

XML Schema Definition (XSD)

 They use a rich data typing system and allow for more

detailed constraints on an XML document's logical structure.

 XSDs also use an XML-based format, which makes it

possible to use ordinary XML tools to help process them.\

XML BASICS

33

 XML: Shapes of XML

XML Schema Definition (XSD)

xs:schema element that defines a schema:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

</xs:schema>

XML BASICS

34

 XML: Shapes of XML

XML Schema Definition (XSD)

XML BASICS

35

 XML: Shapes of XML

XML Schema Definition (XSD)

 The main components of a schema are:

o Element declarations, that define properties of elements.

o Attribute declarations, that define properties of attributes.

o Simple and complex types.

o Model group and attribute group definitions.

XML BASICS

36

 XML: Shapes of XML

XML Schema Definition (XSD)

 The main components of a schema are:

 An attribute use represents the relationship of a complex

type and an attribute declaration, and indicates whether the

attribute is mandatory or optional when it is used in that type.

 An element particle similarly represents the relationship of a

complex type and an element declaration, and indicates the

minimum and maximum number of times the element may

appear in the content.

XML BASICS

37

 XML: Shapes of XML

XML DOM (Data Object Model)

 The DOM defines a standard for accessing and

manipulating documents:

 The W3C Document Object Model (DOM) is a

platform and language-neutral interface that allows

programs and scripts to dynamically access and update

the content, structure, and style of a document

XML BASICS

38

 XML: Shapes of XML

XML DOM (Data Object Model)

 The DOM defines a standard for accessing and

manipulating documents:

o The HTML DOM defines a standard way for accessing and

manipulating HTML documents.

 It presents an HTML document as a tree-structure.

o The XML DOM defines a standard way for accessing and

manipulating XML documents.

 It presents an XML document as a tree-structure.

XML BASICS

39

 XML: Shapes of XML

XML DOM (Data Object Model)

 The DOM defines a standard for accessing and

manipulating documents:

o The HTML DOM defines a standard way for accessing and

manipulating HTML documents.

XML BASICS

40

 XML: Shapes of XML

XML DOM (Data Object Model)

 The DOM defines a standard for accessing and

manipulating documents:

o The HTML DOM defines a standard way for accessing and

manipulating HTML documents.

XML BASICS

41

 XML: Shapes of XML

XML DOM (Data Object Model)

 The DOM defines a standard for accessing and

manipulating documents:

o The XML DOM defines a standard way for accessing and

manipulating XML documents.

All XML elements can be accessed through the XML DOM.

The XML DOM is standard for how to get, change, add, or

delete XML elements.

XML BASICS

42

 XML: Shapes of XML

XML DOM (Data Object Model)

 The DOM defines a standard for accessing and

manipulating documents:

o The XML DOM defines a standard way for accessing and

manipulating XML documents.

All XML elements can be accessed through the XML DOM.

The XML DOM is:

• A standard object model for XML

• A standard programming interface for XML

• Platform- and language-independent

• A W3C standard

XML BASICS

43

 XML: Shapes of XML

XML DOM (Data Object Model)

 The DOM defines a standard for accessing and

manipulating documents:

The DOM models XML as a set of node objects.

o The nodes can be accessed with JavaScript or other

programming languages. In this tutorial we use JavaScript.

o The programming interface to the DOM is defined by a set

standard properties and methods.
 Properties are often referred to as something that is

(i.e. nodename is "book").

 Methods are often referred to as something that is done

(i.e. delete "book").

XML BASICS

44

 XML: Shapes of XML

XML DOM (Data Object Model)

 The DOM defines a standard for accessing and

manipulating documents:

The DOM models XML as a set of node objects.

o XML DOM Properties (x is a node object)

 x.nodeName - the name of x

 x.nodeValue - the value of x

 x.parentNode - the parent node of x

 x.childNodes - the child nodes of x

 x.attributes - the attributes nodes of x

XML BASICS

45

 XML: Shapes of XML

XML DOM (Data Object Model)

 The DOM defines a standard for accessing and

manipulating documents:

The DOM models XML as a set of node objects.

o XML DOM Methods (x is a node object)

 x.getElementsByTagName(name) - get all elements with a specified tag name

 x.appendChild(node) - insert a child node to x

 x.removeChild(node) - remove a child node from x

XML BASICS

46

 XML: Shapes of XML

XML DOM (Data Object Model)

 The DOM defines a standard for accessing and

manipulating documents:

XML BASICS

47

 XML: Shapes of XML

XML DOM (Data Object Model)

 The DOM defines a standard for accessing and

manipulating documents:

XML BASICS

48

 XML: Shapes of XML

XML DOM Parser

 All major browsers have a built-in XML parser

to access and manipulate XML.

 The XML DOM (Document Object Model) defines the

properties and methods for accessing and editing XML.

 However, before an XML document can be accessed, it

must be loaded into an XML DOM object.

 All browsers have a built-in XML parser that can convert

text into an XML DOM object.

XML BASICS

49

 XML: Shapes of XML

XML DOM Parser (example)

XML BASICS

50

 XML: Shapes of XML

XML DOM Parser (example)

XML BASICS

51

 XML: Shapes of XML

XML DOM Parser (example)

JSON INTRO

53

 JSON: Java Script Object Notation

An open-standard file format that uses human-

readable text to transmit data objects consisting

of attribute–value pairs and array data types (or any

other serializable value).

 lightweight data-interchange format,

 easy for humans to read and write,

 easy for machines to parse and generate,

 based on a subset of the JS Programming Language.

Standard ECMA-262 3rd Edition - December 1999

JSON INTRO

54

 JSON: Java Script Object Notation

Basic Data Types:

o Number: a signed decimal number that may contain a fractional

part and may use exponential E notation, but cannot include

non-numbers such as NaN. The format makes no distinction

between integer and floating-point. JavaScript uses a double-

precision floating-point format for all its numeric values, but

other languages implementing JSON may encode numbers

differently.

o String: a sequence of zero or more Unicode characters. Strings

are delimited with double-quotation marks and support a

backslash escaping syntax.

o Boolean: either of the values true or false

JSON INTRO

55

 JSON: Java Script Object Notation

Basic Data Types:

o Object: an unordered collection of name–value pairs where the

names (also called keys) are strings. Since objects are intended to

represent associative arrays, it is recommended, though not

required, that each key is unique within an object. Objects are

delimited with curly brackets and use commas to separate each

pair, while within each pair the colon ':' character separates the

key or name from its value.

o Array: an ordered list of zero or more values, each of which

may be of any type. Arrays use square bracket notation and

elements are comma-separated.

o null: An empty value, using the word null

JSON BASICS

56

 JSON: Java Script Object Notation

JSON is built on two structures:

o A collection of name/value pairs. In various

languages, this is realized as an object, record, struct,

dictionary, hash table, keyed list, or associative array.

o An ordered list of values. In most languages, this is

realized as an array, vector, list, or sequence.

JSON BASICS

57

 JSON: Java Script Object Notation

Example (person):

JSON BASICS

58

 JSON: Java Script Object Notation

JSON Schema & Validation:

 JSON Schema specifies a JSON-based format to

define the structure of JSON data for validation,

documentation, and interaction control.

 It provides a contract for the JSON data required by

a given application, and how that data can be

modified.

JSON BASICS

59

 JSON: Java Script Object Notation

JSON Schema & Validation:

 JSON Schema is based on the concepts from XML

Schema (XSD), but is JSON-based.

 As in XSD, the same serialization/deserialization

tools can be used both for the schema and data; and

is self-describing.

 There are several validators available for different

programming languages, each with varying levels of

conformance.

JSON BASICS

60

 JSON: Java Script Object Notation

Example – Validation Scheme:

JSON BASICS

61

 JSON: Java Script Object Notation

Example – Validation Scheme:

JSON BASICS

62

 JSON: Java Script Object Notation

Example – Validation Scheme:

JSON BASICS

63

 JSON: Java Script Object Notation

Example – Validation Scheme:

JSON BASICS

64

 JSON: Java Script Object Notation

Example – Validation Scheme:

JSON BASICS

65

 JSON: Java Script Object Notation

Example – Validation Scheme:

JSON BASICS

66

 JSON: Java Script Object Notation

Example – Validation Scheme:

JSON BASICS

67

 JSON: Java Script Object Notation

Example – Validation Scheme:

