
Wednesday, November 22, 2017 9:48 PM

import java.net.*;

import java.io.*;

/** A starting point for network servers. You'll need to

 * override handleConnection, but in many cases listen can

 * remain unchanged. NetworkServer uses SocketUtil to simplify

 * the creation of the PrintWriter and BufferedReader.

 * <P>

 * Taken from Core Servlets and JavaServer Pages 2nd Edition

 * from Prentice Hall and Sun Microsystems Press,

 * http://www.coreservlets.com/.

 * © 2003 Marty Hall and Larry Brown.

 * May be freely used or adapted.

 */

public class NetworkServer {

private int port, maxConnections;

/** Build a server on specified port. It will continue to

 * accept connections, passing each to handleConnection until

 * an explicit exit command is sent (e.g., System.exit) or

 * the maximum number of connections is reached. Specify

 * 0 for maxConnections if you want the server to run

 * indefinitely.

 */

public NetworkServer(int port, int maxConnections) {

setPort(port);

setMaxConnections(maxConnections);

}

/** Monitor a port for connections. Each time one is

 * established, pass resulting Socket to handleConnection.

 */

public void listen() {

int i=0;

try {

ServerSocket listener = new ServerSocket(port);

Socket server;

while((i++ < maxConnections) || (maxConnections == 0)) {

server = listener.accept();

handleConnection(server);

}

} catch (IOException ioe) {

System.out.println("IOException: " + ioe);

ioe.printStackTrace();

}

}

/** This is the method that provides the behavior to the

 * server, since it determines what is done with the

 * resulting socket. Override this method in servers

 * you write.

 * <P>

 * This generic version simply reports the host that made

 * the connection, shows the first line the client sent,

 * and sends a single line in response.

 */

protected void handleConnection(Socket server)

throws IOException{

BufferedReader in = SocketUtil.getReader(server);

PrintWriter out = SocketUtil.getWriter(server);

System.out.println

("Generic Network Server: got connection from " +

-1-

Wednesday, November 22, 2017 9:48 PM

server.getInetAddress().getHostName() + "\n" +

"with first line '" + in.readLine() + "'");

out.println("Generic Network Server");

server.close();

}

/** Gets the max connections server will handle before

 * exiting. A value of 0 indicates that server should run

 * until explicitly killed.

 */

public int getMaxConnections() {

return(maxConnections);

}

/** Sets max connections. A value of 0 indicates that server

 * should run indefinitely (until explicitly killed).

 */

public void setMaxConnections(int maxConnections) {

this.maxConnections = maxConnections;

}

/** Gets port on which server is listening. */

public int getPort() {

return(port);

}

/** Sets port. You can only do before "connect" is

 * called. That usually happens in the constructor.

 */

protected void setPort(int port) {

this.port = port;

}

}

-2-

