Wednesday, November 22, 2017 9:48 PM

import java.net.*;
import java.io.*;

/** A starting point for network servers. You'll need to

*

% o ok X ok X X %

/

override handleConnection, but in many cases listen can
remain unchanged. NetworkServer uses SocketUtil to simplify
the creation of the PrintWriter and BufferedReader.

<p>

Taken from Core Servlets and JavaServer Pages 2nd Edition
from Prentice Hall and Sun Microsystems Press,
http://www.coreservlets.com/.

© 2003 Marty Hall and Larry Brown.

May be freely used or adapted.

public class NetworkServer {
private int port, maxConnections;

/*

*

* % X % X

pu

}
/*

*

*

* Build a server on specified port. It will continue to
accept connections, passing each to handleConnection until
an explicit exit command is sent (e.g., System.exit) or
the maximum number of connections is reached. Specify
0 for maxConnections if you want the server to run
indefinitely.

/

blic NetworkServer (int port, int maxConnections) {
setPort (port) ;
setMaxConnections (maxConnections);

* Monitor a port for connections. Each time one 1is
established, pass resulting Socket to handleConnection.
/
public void listen() {
int i=0;
try {

E S R TR S

ServerSocket listener = new ServerSocket (port);
Socket server;

while ((i++ < maxConnections) || (maxConnections == 0)) {
server = listener.accept();
handleConnection (server);

}

} catch (IOException ioe) {
System.out.println("IOException: " 4+ ioe);
ioe.printStackTrace();

}

* This is the method that provides the behavior to the
server, since it determines what is done with the
resulting socket. Override this method in servers
you write.
<p>
This generic version simply reports the host that made
the connection, shows the first line the client sent,
and sends a single line in response.

/

protected void handleConnection (Socket server)

throws IOException({

BufferedReader in = SocketUtil.getReader (server);
PrintWriter out = SocketUtil.getWriter (server);

System.out.println
("Generic Network Server: got connection from " +

-

Wednesday, November 22, 2017 9:48 PM

server.getInetAddress () .getHostName () + "\n" +

"with first line '" 4+ in.readLine() + "'");
out.println("Generic Network Server");
server.close();

}

/** Gets the max connections server will handle before

* exiting. A value of 0 indicates that server should run
* until explicitly killed.

*/

public int getMaxConnections () {
return (maxConnections);

}

/** Sets max connections. A value of 0 indicates that server
* should run indefinitely (until explicitly killed).
*/

public void setMaxConnections (int maxConnections) {
this.maxConnections = maxConnections;

}

/** Gets port on which server is listening. */

public int getPort() {
return (port);

}

/** Sets port. You can only do before "connect" is
* called. That usually happens in the constructor.
*/

protected void setPort (int port) {
this.port = port;
}

