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Implementing MIPS

 We're ready to look at an implementation of the MIPS instruction set

 Simplified to contain only

 arithmetic-logic instructions:  add, sub, and, or, slt

 memory-reference instructions:  lw, sw 

 control-flow instructions:  beq, j
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Implementing MIPS: the 
Fetch/Execute Cycle
 High-level abstract view of fetch/execute implementation

 use the program counter (PC) to read instruction address

 fetch the instruction from memory and increment PC

 use fields of the instruction to select registers to read

 execute depending on the instruction

 repeat…
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Overview: Processor 
Implementation Styles

 Single Cycle

 perform each instruction in 1 clock cycle

 clock cycle must be long enough for slowest instruction; therefore,

 disadvantage: only as fast as slowest instruction

 Multi-Cycle

 break fetch/execute cycle into multiple steps

 perform 1 step in each clock cycle

 advantage: each instruction uses only as many cycles as it needs

 Pipelined

 execute each instruction in multiple steps

 perform 1 step / instruction in each clock cycle

 process multiple instructions in parallel – assembly line



Functional Elements

 Two types of functional elements in the hardware:

 elements that operate on data (called combinational elements)

 elements that contain data (called state or sequential elements)



Combinational Elements
 Works as an input  output function, e.g., ALU

 Combinational logic reads input data from one 
register and writes output data to another, or 
same, register

 read/write happens in a single cycle –
combinational element cannot store data from one 
cycle to a future one
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State Elements

 State elements contain data in internal storage, e.g., 
registers and memory

 All state elements together define the state of the machine

 What does this mean? Think of shutting down and starting up again…

 Flipflops and latches are 1-bit state elements, equivalently, 
they are 1-bit memories

 The output(s) of a flipflop or latch always depends on the bit 
value stored, i.e., its state, and can be called 1/0 or 
high/low or true/false

 The input to a flipflop or latch can change its state 
depending on whether it is clocked or not…



Synchronous Logic: 
Clocked Latches and Flipflops
 Clocks are used in synchronous logic to determine when a state 

element is to be updated 
 in level-triggered clocking methodology either the state changes only 

when the clock is high or only when it is low (technology-dependent)

 in edge-triggered clocking methodology either the rising edge or 
falling edge is active (depending on technology) – i.e., states change 
only on rising edges or only on falling edge

 Latches are level-triggered

 Flipflops are edge-triggered
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State Elements on the 
Datapath: Register File

 Registers are implemented with arrays of D-flipflops
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State Elements on the 
Datapath: Register File

 Port implementation:

n-to-1 
decoder
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VHDL 

 All components that we have discussed – and shall 
discuss – can be fabricated using VHDL (or other 
HDL)

 Refer to VLSI design slides and examples



Single-cycle Implementation 
of MIPS
 Our first implementation of MIPS will use a single long 

clock cycle for every instruction

 Every instruction begins on one up (or, down) clock edge 
and ends on the next up (or, down) clock edge

 This approach is not practical as it is much slower than a 
multicycle implementation where different instruction 
classes can take different numbers of cycles
 in a single-cycle implementation every instruction must take 

the same amount of time as the slowest instruction

 in a multicycle implementation this problem is avoided by 
allowing quicker instructions to use fewer cycles

 Even though the single-cycle approach is not practical it is 
simple and useful to understand first

 Note : we shall implement jump at the very end



Datapath: Instruction 
Store/Fetch & PC Increment
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Animating the Datapath

Instruction <- MEM[PC]
PC <- PC + 4
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Datapath: R-Type Instruction

ALU control
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Animating the Datapath

add rd, rs, rt

R[rd] <- R[rs] + R[rt];
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Datapath: 
Load/Store Instruction
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Animating the Datapath
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Animating the Datapath
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Datapath: Branch Instruction
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Animating the Datapath

beq rs, rt, offset
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MIPS Datapath I: Single-Cycle

Input is either register (R-type) or sign-extended
lower half of instruction (load/store)

Combining the datapaths for R-type instructions 
and load/stores using two multiplexors

Data is either 
from ALU (R-type)
or memory (load)



Animating the Datapath: 
R-type Instruction
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Animating the Datapath: 
Load Instruction

lw rt,offset(rs)
5 516

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Register File

Operation

ALU

3

E
X
T
N
D

16 32

Zero

RD

WD

MemRead

Data
Memory

ADDR
MemWrite

5

Instruction
32

M
U
X

M
U
XALUSrc

MemtoReg



Animating the Datapath: 
Store Instruction

sw rt,offset(rs)
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MIPS Datapath II: Single-Cycle

Adding instruction fetch

Separate instruction memory
as instruction and data read
occur in the same clock cycle

Separate adder as ALU operations and PC 
increment occur in the same clock cycle
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MIPS Datapath III: Single-Cycle

Adding branch capability and another multiplexor

Instruction address is either
PC+4 or branch target address

Extra adder needed as both
adders operate in each cycle

New multiplexor

Important note: in a single-cycle implementation data cannot be stored 
during an instruction – it only moves through combinational logic
Question: is the MemRead signal really needed?! Think of RegWrite…!



Datapath Executing add
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Datapath Executing lw

lw rt,offset(rs)
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Datapath Executing sw

sw rt,offset(rs)
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Datapath Executing beq

beq r1,r2,offset
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