
Ειδικά Θέματα Αρχιτεκτονικής και
Προγραμματισμού Μικροεπεξεργαστών

Ενότητα 4: The Processor: Datapath and Control

Διδάσκων: Βαρτζιώτης Φώτιος
Τμήμα Πληροφορικής και Τηλεπικοινωνιών

Implementing MIPS

 We're ready to look at an implementation of the MIPS instruction set

 Simplified to contain only

 arithmetic-logic instructions: add, sub, and, or, slt

 memory-reference instructions: lw, sw

 control-flow instructions: beq, j

op rs rt offset

6 bits 5 bits 5 bits 16 bits

op rs rt rd functshamt

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

R-Format

I-Format

op address

6 bits 26 bits

J-Format

Implementing MIPS: the
Fetch/Execute Cycle
 High-level abstract view of fetch/execute implementation

 use the program counter (PC) to read instruction address

 fetch the instruction from memory and increment PC

 use fields of the instruction to select registers to read

 execute depending on the instruction

 repeat…

Registers

Register #

Data

Register #

Data
memory

Address

Data

Register #

PC Instruction ALU

Instruction
memory

Address

Overview: Processor
Implementation Styles

 Single Cycle

 perform each instruction in 1 clock cycle

 clock cycle must be long enough for slowest instruction; therefore,

 disadvantage: only as fast as slowest instruction

 Multi-Cycle

 break fetch/execute cycle into multiple steps

 perform 1 step in each clock cycle

 advantage: each instruction uses only as many cycles as it needs

 Pipelined

 execute each instruction in multiple steps

 perform 1 step / instruction in each clock cycle

 process multiple instructions in parallel – assembly line

Functional Elements

 Two types of functional elements in the hardware:

 elements that operate on data (called combinational elements)

 elements that contain data (called state or sequential elements)

Combinational Elements
 Works as an input output function, e.g., ALU

 Combinational logic reads input data from one
register and writes output data to another, or
same, register

 read/write happens in a single cycle –
combinational element cannot store data from one
cycle to a future one

Clock cycle

State
element

1
Combinational logic

State
element

2

State
element

Combinational logic

Combinational logic hardware units

State Elements

 State elements contain data in internal storage, e.g.,
registers and memory

 All state elements together define the state of the machine

 What does this mean? Think of shutting down and starting up again…

 Flipflops and latches are 1-bit state elements, equivalently,
they are 1-bit memories

 The output(s) of a flipflop or latch always depends on the bit
value stored, i.e., its state, and can be called 1/0 or
high/low or true/false

 The input to a flipflop or latch can change its state
depending on whether it is clocked or not…

Synchronous Logic:
Clocked Latches and Flipflops
 Clocks are used in synchronous logic to determine when a state

element is to be updated
 in level-triggered clocking methodology either the state changes only

when the clock is high or only when it is low (technology-dependent)

 in edge-triggered clocking methodology either the rising edge or
falling edge is active (depending on technology) – i.e., states change
only on rising edges or only on falling edge

 Latches are level-triggered

 Flipflops are edge-triggered

Clock period Rising edge

Falling edge

State Elements on the
Datapath: Register File

 Registers are implemented with arrays of D-flipflops

Read register
number 1 Read

data 1

Read
data 2

Read register
number 2

Register file
Write
register

Write
data Write

Register file with two read ports and
one write port

Clock

5 bits

5 bits

5 bits

32 bits

32 bits

32 bits

Control signal

State Elements on the
Datapath: Register File

 Port implementation:

n-to-1
decoder

Register 0

Register 1

Register n – 1
C

C

D

D
Register n

C

C

D

D

Register number

Write

Register data

0

1

n – 1

n

M
u

x

Register 0

Register 1

Register n – 1

Register n

M

u
x

Read data 1

Read data 2

Read register
number 1

Read register
number 2

Read ports are implemented
with a pair of multiplexors – 5
bit multiplexors for 32 registers

Write port is implemented using
a decoder – 5-to-32 decoder for
32 registers. Clock is relevant to
write as register state may change
only at clock edge

Clock

Clock

VHDL

 All components that we have discussed – and shall
discuss – can be fabricated using VHDL (or other
HDL)

 Refer to VLSI design slides and examples

Single-cycle Implementation
of MIPS
 Our first implementation of MIPS will use a single long

clock cycle for every instruction

 Every instruction begins on one up (or, down) clock edge
and ends on the next up (or, down) clock edge

 This approach is not practical as it is much slower than a
multicycle implementation where different instruction
classes can take different numbers of cycles
 in a single-cycle implementation every instruction must take

the same amount of time as the slowest instruction

 in a multicycle implementation this problem is avoided by
allowing quicker instructions to use fewer cycles

 Even though the single-cycle approach is not practical it is
simple and useful to understand first

 Note : we shall implement jump at the very end

Datapath: Instruction
Store/Fetch & PC Increment

PC

Instruction
memory

Instruction
address

Instruction

a. Instruction memory b. Program counter

Add Sum

c. Adder

PC

Instruction
memory

Read
address

Instruction

4

Add

Three elements used to store
and fetch instructions and
increment the PC

Datapath

Animating the Datapath

Instruction <- MEM[PC]
PC <- PC + 4

RD
Memory

ADDR

PC

Instruction

4

ADD

Datapath: R-Type Instruction

ALU control

RegWrite

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
data

ALU
result

ALU

Data

Data

Register
numbers

a. Registers b. ALU

Zero
5

5

5 3

Instruction
Registers

Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
data

ALU
result

ALU

Zero

RegWrite

ALU operation
3

Two elements used to implement
R-type instructions

Datapath

Animating the Datapath

add rd, rs, rt

R[rd] <- R[rs] + R[rt];

5 5 5

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Register File

op rs rt rd functshamt

Operation

ALU Zero

Instruction

3

Datapath:
Load/Store Instruction

16 32
Sign

extend

b. Sign-extension unit

MemRead

MemWrite

Data
memory

Write
data

Read
data

a. Data memory unit

Address

Instruction

16 32

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Data
memory

Write
data

Read
data

Write
data

Sign
extend

ALU
result

Zero
ALU

Address

MemRead

MemWrite

RegWrite

ALU operation3

Two additional elements used
To implement load/stores

Datapath

Animating the Datapath

op rs rt offset/immediate

5 5

16

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Register File

Operation

ALU

3

E
X
T
N
D

16 32

Zero

RDWD

MemRead

Memory
ADDR

MemWrite

5

lw rt, offset(rs)

R[rt] <- MEM[R[rs] + s_extend(offset)];

Animating the Datapath

op rs rt offset/immediate

5 5

16

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Register File

Operation

ALU

3

E
X
T
N
D

16 32

Zero

RDWD

MemRead

Memory
ADDR

MemWrite

5

sw rt, offset(rs)

MEM[R[rs] + sign_extend(offset)] <- R[rt]

Datapath: Branch Instruction

16 32
Sign

extend

ZeroALU

Sum

Shift
left 2

To branch

control logic

Branch target

PC + 4 from instruction datapath

Instruction

Add

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
data

RegWrite

ALU operation
3

Datapath

No shift hardware required:
simply connect wires from
input to output, each shifted
left 2 bits

Animating the Datapath

beq rs, rt, offset

op rs rt offset/immediate

5 5

16

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Register File

Operation

ALU

E
X
T
N
D

16 32

Zero

ADD

<<2

PC +4 from
instruction
datapath

if (R[rs] == R[rt]) then
PC <- PC+4 + s_extend(offset<<2)

MIPS Datapath I: Single-Cycle

Input is either register (R-type) or sign-extended
lower half of instruction (load/store)

Combining the datapaths for R-type instructions
and load/stores using two multiplexors

Data is either
from ALU (R-type)
or memory (load)

Animating the Datapath:
R-type Instruction

add rd,rs,rt
5 516

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Register File

Operation

ALU

3

E
X
T
N
D

16 32

Zero

RD

WD

MemRead

Data
Memory

ADDR
MemWrite

5

Instruction
32

M
U
X

M
U
XALUSrc

MemtoReg

Animating the Datapath:
Load Instruction

lw rt,offset(rs)
5 516

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Register File

Operation

ALU

3

E
X
T
N
D

16 32

Zero

RD

WD

MemRead

Data
Memory

ADDR
MemWrite

5

Instruction
32

M
U
X

M
U
XALUSrc

MemtoReg

Animating the Datapath:
Store Instruction

sw rt,offset(rs)
5 516

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Register File

Operation

ALU

3

E
X
T
N
D

16 32

Zero

RD

WD

MemRead

Data
Memory

ADDR
MemWrite

5

Instruction
32

M
U
X

M
U
XALUSrc

MemtoReg

PC

Instruction
memory

Read
address

Instruction

16 32

Registers

Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

ALU
result

Zero

Data
memory

Address

Write
data

Read
data M

u
x

4

Add

M
u
x

ALU

RegWrite

ALU operation3

MemRead

MemWrite

ALUSrc
MemtoReg

MIPS Datapath II: Single-Cycle

Adding instruction fetch

Separate instruction memory
as instruction and data read
occur in the same clock cycle

Separate adder as ALU operations and PC
increment occur in the same clock cycle

PC

Instruction
memory

Read
address

Instruction

16 32

Add ALU
result

M
u
x

Registers

Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1
Read
register 2

Shift
left 2

4

M
u
x

ALU operation3

RegWrite

MemRead

MemWrite

PCSrc

ALUSrc

MemtoReg

ALU
result

Zero
ALU

Data
memory

Address

Write
data

Read
data M

u
x

Sign
extend

Add

MIPS Datapath III: Single-Cycle

Adding branch capability and another multiplexor

Instruction address is either
PC+4 or branch target address

Extra adder needed as both
adders operate in each cycle

New multiplexor

Important note: in a single-cycle implementation data cannot be stored
during an instruction – it only moves through combinational logic
Question: is the MemRead signal really needed?! Think of RegWrite…!

Datapath Executing add

add rd, rs, rt

5 516

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Register File

Operation

ALU

3

E
X
T
N
D

16 32

Zero

RD

WD

MemRead

Data
Memory

ADDR
MemWrite

5

Instruction
32

M
U
X

ALUSrc

MemtoReg

ADD

<<2

RD

Instruction
Memory

ADDR

PC

4

ADD

ADD

M
U
X

M
U
X

PCSrc

Datapath Executing lw

lw rt,offset(rs)

5 516

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Register File

Operation

ALU

3

E
X
T
N
D

16 32

Zero

RD

WD

MemRead

Data
Memory

ADDR
MemWrite

5

Instruction
32

M
U
X

ALUSrc

MemtoReg

ADD

<<2

RD

Instruction
Memory

ADDR

PC

4

ADD

ADD

M
U
X

M
U
X

PCSrc

Datapath Executing sw

sw rt,offset(rs)

5 516

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Register File

Operation

ALU

3

E
X
T
N
D

16 32

Zero

RD

WD

MemRead

Data
Memory

ADDR
MemWrite

5

Instruction
32

M
U
X

ALUSrc

MemtoReg

ADD

<<2

RD

Instruction
Memory

ADDR

PC

4

ADD

ADD

M
U
X

M
U
X

PCSrc

Datapath Executing beq

beq r1,r2,offset

5 516

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Register File

Operation

ALU

3

E
X
T
N
D

16 32

Zero

RD

WD

MemRead

Data
Memory

ADDR
MemWrite

5

Instruction
32

M
U
X

ALUSrc

MemtoReg

ADD

<<2

RD

Instruction
Memory

ADDR

PC

4

ADD

ADD

M
U
X

M
U
X

PCSrc

