
Ειδικά Θέματα Αρχιτεκτονικής και

Προγραμματισμού Μικροεπεξεργαστών

Ενότητα 3: Arithmetic for Computers

Διδάσκων: Βαρτζιώτης Φώτιος

Τμήμα Πληροφορικής και Τηλεπικοινωνιών

Arithmetic

 Where we've been:

 performance

 abstractions

 instruction set architecture

 assembly language and machine language

 What's up ahead:

 implementing the architecture

32

32

32

operation

result

a

b

ALU

Numbers

 Bits are just bits (no inherent meaning)

 conventions define relationship between bits and numbers

 Binary integers (base 2)

 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001...

 decimal: 0, …, 2n-1

 Of course it gets more complicated:

 bit strings are finite, but

 for some fractions and real numbers, finitely many bits is not enough, so

 overflow & approximation errors: e.g., represent 1/3 as binary!

 negative integers

 How do we represent negative integers?

 which bit patterns will represent which integers?

n bits

Possible Representations
 Sign Magnitude: One's Complement Two's Complement

000 = 0 000 = 0 000 = 0
001 = +1 001 = +1 001 = +1
010 = +2 010 = +2 010 = +2
011 = +3 011 = +3 011 = +3
100 = 0 100 = -3 100 = -4
101 = -1 101 = -2 101 = -3
110 = -2 110 = -1 110 = -2
111 = -3 111 = 0 111 = -1

 Issues:

 balance – equal number of negatives and positives

 ambiguous zero – whether more than one zero representation

 ease of arithmetic operations

 Which representation is best? Can we get both balance and non-ambiguous zero?

a
m

b
ig

u
o
u
s

z
e
ro

a
m

b
ig

u
o
u
s

z
e
ro

Representation Formulae

 Two’s complement:

xn xn-1…x0 = xn * -2n + xn-1 * 2
n-1 + … + x0 * 2

0

or

xnX’ = xn * -2n + X’ (writing rightmost n bits xn-1…x0 as X’)

= X’, if xn = 0

-2n + X’, if xn = 1

 One’s complement:

xnX’ = X’, if xn = 0

-2n + 1 + X’, if xn = 1

MIPS – 2’s complement

 32 bit signed numbers:

0000 0000 0000 0000 0000 0000 0000 0000two = 0ten
0000 0000 0000 0000 0000 0000 0000 0001two = + 1ten
0000 0000 0000 0000 0000 0000 0000 0010two = + 2ten
...
0111 1111 1111 1111 1111 1111 1111 1110two = + 2,147,483,646ten
0111 1111 1111 1111 1111 1111 1111 1111two = + 2,147,483,647ten
1000 0000 0000 0000 0000 0000 0000 0000two = – 2,147,483,648ten
1000 0000 0000 0000 0000 0000 0000 0001two = – 2,147,483,647ten
1000 0000 0000 0000 0000 0000 0000 0010two = – 2,147,483,646ten
...
1111 1111 1111 1111 1111 1111 1111 1101two = – 3ten
1111 1111 1111 1111 1111 1111 1111 1110two = – 2ten
1111 1111 1111 1111 1111 1111 1111 1111two = – 1ten

maxint

minint

Negative integers are exactly those that have leftmost bit 1

Two's Complement Operations

 Negation Shortcut: To negate any two's complement integer

(except for minint) invert all bits and add 1

 note that negate and invert are different operations!

 Sign Extension Shortcut: To convert an n-bit integer into an

integer with more than n bits – i.e., to make a narrow

integer fill a wider word – replicate the most significant bit

(msb) of the original number to fill the new bits to its left

 Example: 4-bit 8-bit

0010 = 0000 0010

1010 = 1111 1010

 why is this correct? Prove!

MIPS Notes

 lb vs. lbu

 signed load sign extends to fill 24 left bits

 unsigned load fills left bits with 0’s

 slt & slti

 compare signed numbers

 sltu & sltiu

 compare unsigned numbers, i.e., treat

both operands as non-negative

Two’s Complement Addition

 Perform add just as in 1st semester(carry/borrow 1s)

 Examples (4-bits):

0101 0110 1011 1001 1111

0001 0101 0111 1010 1110

Do these sums now!! Remember all registers are 4-bit including result register!

So you have to throw away the carry-out from the msb!!

 Have to beware of overflow : if the fixed number of bits (4, 8, 16, 32,

etc.) in a register cannot represent the result of the operation

 terminology alert: overflow does not mean there was a carry-out from the

msb that we lost (though it sounds like that!) – it means simply that the

result in the fixed-sized register is incorrect

 as can be seen from the above examples there are cases when the result is

correct even after losing the carry-out from the msb

Two’s Complement Addition:

Verifying Carry/Borrow method

 Two (n+1)-bit integers: X = xnX’, Y = ynY’

xn = 0, yn = 0 ok not ok(overflow!)

xn = 1, yn = 0 ok ok

xn = 0, yn = 1 ok ok

xn = 1, yn = 1 not ok(overflow!) ok

 Prove the cases above!

 Prove if there is one more bit (total n+2 then) available for the result then

there is no problem with overflow in add!

Carry/borrow

add X + Y

0 X’ + Y’ 2n

(no CarryIn to last bit)

2n X’ + Y’ 2n+1 – 1

(CarryIn to last bit)

Two's Complement Operations

 Now verify the negation shortcut!

 consider X + (X +1) = (X + X) + 1:

associative law – but what if there is overflow in one of the

adds on either side, i.e., the result is wrong…!

 think minint !

 Examples:

 –0101 = 1010 + 1 = 1011

 –1100 = 0011 + 1 = 0100

 –1000 = 0111 + 1 = 1000

Detecting Overflow
 No overflow when adding a positive and a negative number

 No overflow when subtracting numbers with the same sign

 Overflow occurs when the result has “wrong” sign (verify!):

Operation Operand A Operand B Result

Indicating Overflow

A + B 0 0 0

A + B 0 0 0

A – B 0 0 0

A – B 0 0 0

 Consider the operations A + B, and A – B

 can overflow occur if B is 0 ?

 can overflow occur if A is 0 ?

Effects of Overflow

 If an exception (interrupt) occurs

 control jumps to predefined address for exception

 interrupted address is saved for possible resumption

 Details based on software system/language

 SPIM: see the EPC and Cause registers

 Don't always want to cause exception on overflow

 add, addi, sub cause exceptions on overflow

 addu, addiu, subu do not cause exceptions on overflow

Review: Basic Hardware
c = a . bba

000

010

001

111

b

a
c

b

a
c

a c

c = a + bba

000

110

101

111

10

01

c = aa

a0

b1

cd

0

1

a

c

b

d

1. AND gate (c = a . b)

2. OR gate (c = a + b)

3. Inverter (c = a)

4. Multiplexor

 (if d = = 0, c = a;

 else c = b)

Review: Boolean Algebra &

Gates

 Problem: Consider logic functions with three inputs:
A, B, C.

 output D is true if at least one input is true

 output E is true if exactly two inputs are true

 output F is true only if all three inputs are true

 Show the truth table for these three

functions

 Show the Boolean equations for these

three functions

 Show an implementation consisting of

inverters, AND, and OR gates.

A Simple Multi-Function Logic

Unit

 To warm up let's build a logic unit to support the and and or

instructions for MIPS (32-bit registers)

 we'll just build a 1-bit unit and use 32 of them

 Possible implementation using a multiplexor :

a

b

output

operation

selector

Implementation with a

Multiplexor
 Selects one of the inputs to be the output

based on a control input

 Lets build our ALU using a MUX (multiplexor):

b

0

1

Result

Operation

a

.

.

.

Implementations

 Not easy to decide the best way to implement something

 do not want too many inputs to a single gate

 do not want to have to go through too many gates (= levels)

 for our purposes, ease of comprehension is important

 Let's look at a 1-bit ALU for addition:

 How could we build a 1-bit ALU for add, and, and or?

 How could we build a 32-bit ALU?

cout = a.b + a.cin + b.cin

sum = a.b.cin + a.b.cin +

a.b.cin + a.b.cin
= a b cin

Sum

CarryIn

CarryOut

a

b

exclusive or (xor)

1-bit Adder Logic

Half-adder with one xor gate

Full-adder from 2 half-adders and

an or gate

Half-adder with the xor gate replaced

by primitive gates using the equation

AB = A.B +A.B

xor

Building a 32-bit ALU

b

0

2

Result

Operation

a

1

CarryIn

CarryOut

Result31

a31

b31

Result0

CarryIn

a0

b0

Result1

a1

b1

Result2

a2

b2

Operation

ALU0

CarryIn

CarryOut

ALU1

CarryIn

CarryOut

ALU2

CarryIn

CarryOut

ALU31

CarryIn

Ripple-Carry Logic for 32-bit ALU

1-bit ALU for AND, OR and add

Multiplexor control

line

What about Subtraction (a – b) ?

 Two's complement approach: just negate b and add.

 How do we negate?

 recall negation shortcut : invert each bit of b and set

CarryIn to least significant bit (ALU0) to 1

0

2

Result

Operation

a

1

CarryIn

CarryOut

0

1

Binvert

b

Tailoring the ALU to MIPS:

Test for Less-than and Equality

 Need to support the set-on-less-than instruction

 e.g., slt $t0, $t3, $t4

 remember: slt is an R-type instruction that produces 1 if rs < rt and
0 otherwise

 idea is to use subtraction: rs < rt rs – rt < 0. Recall msb of
negative number is 1

 two cases after subtraction rs – rt:

 if no overflow then rs < rt most significant bit of rs – rt = 1

 if overflow then rs < rt most significant bit of rs – rt = 0

 why?

 e.g., 5ten – 6ten = 0101 – 0110 = 0101 + 1010 = 1111 (ok!)

-7ten – 6ten = 1001 – 0110 = 1001 + 1010 = 0011 (overflow!)

 therefore

set bit = msb of rs – rt overflow bit

where set bit, which is output from ALU31, gives the result of slt

 Fig. (lower) indicates set bit is the adder output – not correct !!

 set bit is sent from ALU31 to ALU0 as the Less bit at ALU0; all other
Less bits are hardwired 0; so Less is the 32-bit result of slt

Supporting slt

1- bit ALU for the 31 least significant bits

0

3

Result

Operation

a

1

CarryIn

CarryOut

0

1

Binvert

b 2

Less

0

3

Result

Operation

a

1

CarryIn

0

1

Binvert

b 2

Less

Set

Overflow

detection
Overflow

a.

b.

Set

a31

0

ALU0 Result0

CarryIn

a0

Result1

a1

0

Result2

a2

0

Operation

b31

b0

b1

b2

Result31

Overflow

Binvert

CarryIn

Less

CarryIn

CarryOut

ALU1

Less

CarryIn

CarryOut

ALU2

Less

CarryIn

CarryOut

ALU31

Less

CarryIn

1-bit ALU for the most significant bit

Extra set bit, to be routed to the Less input of the least significant 1-bit

ALU, is computed from the most significant Result bit and the Overflow bit

(it is not the output of the adder as the figure seems to indicate)

Less input of

the 31 most

significant ALUs

is always 0

32-bit ALU from 31 copies of ALU at top left and 1 copy

of ALU at bottom left in the most significant position

Tailoring the ALU to MIPS:

Test for Less-than and Equality

 What about logic for the overflow bit ?

 overflow bit = carry in to msb carry out of msb

 verify!

 logic for overflow detection therefore can be put in to ALU31

 Need to support test for equality

 e.g., beq $t5, $t6, $t7

 use subtraction: rs - rt = 0 rs = rt

 do we need to consider overflow?

Supporting

Test for Equality

Set

a31

0

Result0
a0

Result1
a1

0

Result2
a2

0

Operation

b31

b0

b1

b2

Result31

Overflow

Bnegate

Zero

ALU0

Less

CarryIn

CarryOut

ALU1

Less

CarryIn

CarryOut

ALU2

Less

CarryIn

CarryOut

ALU31

Less

CarryIn

ALU Result

Zero

Overflow

a

b

ALU operation

CarryOut

ALU

control

lines

Bneg- Oper- Func-

ate ation tion

0 00 and

0 01 or

0 10 add

1 10 sub

1 11 slt

Symbol representing ALU

Output is 1 only if all Result bits are 0

Combine CarryIn

to least significant

ALU and Binvert to

a single control line

as both are always

either 1 or 0

32-bit MIPS ALU

Conclusion

 We can build an ALU to support the MIPS instruction set

 key idea: use multiplexor to select the output we want

 we can efficiently perform subtraction using two’s complement

 we can replicate a 1-bit ALU to produce a 32-bit ALU

 Important points about hardware

 all gates are always working

 speed of a gate depends on number of inputs (fan-in) to the gate

 speed of a circuit depends on number of gates in series
(particularly, on the critical path to the deepest level of logic)

 Speed of MIPS operations

 clever changes to organization can improve performance
(similar to using better algorithms in software)

 we’ll look at examples for addition, multiplication and division

Problem: Ripple-carry Adder

is Slow
 Is a 32-bit ALU as fast as a 1-bit ALU? Why?

 Is there more than one way to do addition? Yes:

 one extreme: ripple-carry – carry ripples through 32 ALUs, slow!

 other extreme: sum-of-products for each CarryIn bit – super fast!

 CarryIn bits:

c1 = b0.c0 + a0.c0 + a0.b0

c2 = b1.c1 + a1.c1 + a1.b1

= a1.a0.b0 + a1.a0.c0 + a1.b0.c0 (substituting for c1)

+ b1.a0.b0 + b1.a0.c0 + b1.b0.c0 + a1.b1

c3 = b2.c2 + a2.c2 + a2.b2

= … = sum of 15 4-term products…

 How fast? But not feasible for a 32-bit ALU! Why? Exponential complexity!!

Note: ci is CarryIn bit into i th ALU;

c0 is the forced CarryIn into the

least significant ALU

Two-level Carry-lookahead

Adder: First Level
 An approach between our two extremes

 Motivation:

 if we didn't know the value of a carry-in, what could we do?

 when would we always generate a carry? (generate) gi = ai . bi

 when would we propagate the carry? (propagate) pi = ai + bi

 Express (carry-in equations in terms of generate/propagates)

c1 = g0 + p0.c0

c2 = g1 + p1.c1 = g1 + p1.g0 + p1.p0.c0

c3 = g2 + p2.c2 = g2 + p2.g1 + p2.p1.g0 + p2.p1.p0.c0

c4 = g3 + p3.c3 = g3 + p3.g2 + p3.p2.g1 + p3.p2.p1.g0

+ p3.p2.p1.p0.c0

 Feasible for 4-bit adders – with wider adders unacceptable complexity.

 solution: build a first level using 4-bit adders, then a second level on top

Two-level Carry-lookahead Adder:

Second Level for a 16-bit adder

 Propagate signals for each of the four 4-bit adder blocks:

P0 = p3.p2.p1.p0

P1 = p7.p6.p5.p4

P2 = p11.p10.p9.p8

P3 = p15.p14.p13.p12

 Generate signals for each of the four 4-bit adder blocks:

G0 = g3 + p3.g2 + p3.p2.g1 + p3.p2.p1.g0

G1 = g7 + p7.g6 + p7.p6.g5 + p7.p6.p5.g4

G2 = g11 + p11.g10 + p11.p10.g9 + p11.p10.p9.g8

G3 = g15 + p15.g14 + p15.p14.g13 + p15.p14.p13.g12

Two-level Carry-lookahead Adder: Second

Level for a 16-bit adder

 CarryIn signals for each of the four 4-bit adder blocks (see

earlier carry-in equations in terms of generate/propagates):

C1 = G0 + P0.c0

C2 = G1 + P1.G0 + P1.P0.c0

C3 = G2 + P2.G1 + P2.P1.G0 + P2.P1.P0.c0

C4 = G3 + P3.G2 + P3.P2.G1 + P3.P2.P1.G0 +

P3.P2.P1.P0.c0

Carry In

Result0--3
Carry In

Result4--7
Carry In

Result8--11
Carry In

C a rryO ut

Result12--15
Carry In

C1

C2

C3

C4

P 0
G 0

P 1
G 1

P 2
G 2

P 3
G 3

a0
b0
a1
b1
a2
b2
a3
b3

a4
b4
a5
b5
a6
b6
a7
b7

a8
b8
a9
b 9

a1 0
b1 0
a1 1
b1 1

a1 2
b1 2
a1 3
b1 3
a1 4
b1 4
a1 5
b1 5

L
o

g
ic

 t
o

 c
o

m
p

u
te

 C
1

,
C

2
,
C

3
,
C

4

4bAdder0

4bAdder1

4bAdder2

4bAdder3

16-bit carry-lookahead adder from four 4-bit

adders and one carry-lookahead unit

Carry-lookahead

Logic

ALU0

ALU1

ALU2

ALU3

a1

a0

a2

a3

b1

b0

b2

b3

s0

s1

s2

s3

L
o

g
ic

 t
o

 c
o

m
p

u
te

c
1

,
c
2

,
c
3

,
c
4

,
P

0
,
G

0

Blow-up of 4-bit adder:

(conceptually) consisting of

four 1-bit ALUs plus logic to

compute all CarryOut bits

and one super generate and

one super propagate bit.

Each 1-bit ALU is exactly as

for ripple-carry except c1, c2,

c3 for ALUs 1, 2, 3 comes

from the extra logic

CarryIn

Carry-lookahead Unit

Two-level Carry-lookahead Adder:

Second Level for a 16-bit adder

 Two-level carry-lookahead logic steps:

1. compute pi’s and gi’s at each 1-bit ALU

2. compute Pi’s and Gi’s at each 4-bit adder unit

3. compute Ci’s in carry-lookahead unit

4. compute ci’s at each 4-bit adder unit

5. compute results (sum bits) at each 1-bit ALU

 E.g., add using carry-lookahead logic:

 0001 1010 0011 0011

 1110 0101 1110 1011

 Compare times for ripple-carry vs. carry-lookahead for a 16-bit

adder assuming unit delay at each gate

Multiply
 shift-add method:

Multiplicand 1000

Multiplier 1001

1000

0000

0000

1000

Product 01001000

m bits x n bits = m+n bit product

Binary makes it easy:

 multiplier bit 1 => copy multiplicand (1 x multiplicand)

 multiplier bit 0 => place 0 (0 x multiplicand)

3 versions of multiply hardware & algorithm

x

Shift-add Multiplier Version 1

64-bit ALU

Control test

Multiplier

Shift right

Product

Write

Multiplicand

Shift left

64 bits

64 bits

32 bits

Done

1. Test

Multiplier0

1a. Add multiplicand to product and

place the result in Product register

2. Shift the Multiplicand register left 1 bit

3. Shift the Multiplier register right 1 bit

32nd repetition?

Start

Multiplier0 = 0Multiplier0 = 1

No: < 32 repetitions

Yes: 32 repetitions

Multiplicand register, product register, ALU are

64-bit wide; multiplier register is 32-bit wide

Algorithm

32-bit multiplicand starts at right half of multiplicand register

Product register is initialized at 0

Shift-add Multiplier Version1

Done

1. Test

Multiplier0

1a. Add multiplicand to product and

place the result in Product register

2. Shift the Multiplicand register left 1 bit

3. Shift the Multiplier register right 1 bit

32nd repetition?

Start

Multiplier0 = 0Multiplier0 = 1

No: < 32 repetitions

Yes: 32 repetitions

Itera Step Multiplier Multiplicand Product

-tion

0 init 0011 0000 0010 0000 0000

values

1 1a 0011 0000 0010 0000 0010

2 0011 0000 0100 0000 0010

3 0001 0000 0100 0000 0010

2 …

Example: 0010 * 0011:

Algorithm

Observations on Multiply

Version 1

1 step per clock cycle nearly 100 clock cycles to multiply two

32-bit numbers

Half the bits in the multiplicand register always 0

 64-bit adder is wasted

0’s inserted to right as multiplicand is shifted left

 least significant bits of product never

change once formed

 Intuition: instead of shifting multiplicand to left, shift product to

right…

Shift-add Multiplier Version 2

Multiplier

Shift right

Write

32 bits

64 bits

32 bits

Shift right

Multiplicand

32-bit ALU

Product Control test

Done

1. Test

Multiplier0

1a. Add multiplicand to the left half of

the product and place the result in

the left half of the Product register

2. Shift the Product register right 1 bit

3. Shift the Multiplier register right 1 bit

32nd repetition?

Start

Multiplier0 = 0Multiplier0 = 1

No: < 32 repetitions

Yes: 32 repetitions

Multiplicand register, multiplier register, ALU

are 32-bit wide; product register is 64-bit wide;

multiplicand adds to left half of product register

Algorithm

Product register is initialized at 0

Shift-add Multiplier Version 2

Done

1. Test

Multiplier0

1a. Add multiplicand to the left half of

the product and place the result in

the left half of the Product register

2. Shift the Product register right 1 bit

3. Shift the Multiplier register right 1 bit

32nd repetition?

Start

Multiplier0 = 0Multiplier0 = 1

No: < 32 repetitions

Yes: 32 repetitions

Itera Step Multiplier Multiplicand Product

-tion

0 init 0011 0010 0000 0000

values

1 1a 0011 0010 0010 0000

2 0011 0010 0001 0000

3 0001 0010 0001 0000

2 …

Example: 0010 * 0011:

Algorithm

Observations on Multiply

Version 2

Each step the product register wastes space that exactly

matches the current size of the multiplier

 Intuition: combine multiplier register and product register…

Shift-add Multiplier Version 3

Control

testWrite

32 bits

64 bits

Shift right
Product

Multiplicand

32-bit ALU

Done

1. Test

Product0

1a. Add multiplicand to the left half of

the product and place the result in

the left half of the Product register

2. Shift the Product register right 1 bit

32nd repetition?

Start

Product0 = 0Product0 = 1

No: < 32 repetitions

Yes: 32 repetitions
No separate multiplier register; multiplier

placed on right side of 64-bit product register
Algorithm

Product register is initialized with multiplier on right

Shift-add Multiplier Version 3

Done

1. Test

Product0

1a. Add multiplicand to the left half of

the product and place the result in

the left half of the Product register

2. Shift the Product register right 1 bit

32nd repetition?

Start

Product0 = 0Product0 = 1

No: < 32 repetitions

Yes: 32 repetitions

Itera Step Multiplicand Product

-tion

0 init 0010 0000 0011

values

1 1a 0010 0010 0011

2 0010 0001 0001

2 …

Example: 0010 * 0011:

Algorithm

Observations on Multiply

Version 3

2 steps per bit because multiplier & product combined

What about signed multiplication?

easiest solution is to make both positive and remember whether to

negate product when done, i.e., leave out the sign bit, run for 31

steps, then negate if multiplier and multiplicand have opposite signs

Booth’s Algorithm is an elegant way to multiply signed numbers

using same hardware – it also often quicker…

Motivating Booth’s algorithm
 Example 0010 * 0110. Traditional:

0010

0110

0000 shift (0 in multiplier)

0010 add (1 in multiplier)

0010 add (1 in multiplier)

0000 shift (0 in multiplier)

00001100

 Same example. But observe there are two successive 1’s in multiplier

0110 = 22 + 21 = 23 – 21, so can replace successive 1’s by subtract and then add:

0010

0110

0000 shift (0 in multiplier)

-0010 sub (first 1 in multiplier)

0000 shift (middle of string of 1’s)

0010 add (previous step had last 1)

00001100

x

Motivating Booth’s Algorithm

Math idea: string of 1’s …011…10… has

value the sum 2n + 2n-1 + … + 2m = 2n+1 – 2m

Replace a string of 1s in multiplier with an initial subtract when we

first see a one and then later add after the last one

What if the string of 1’s started from the left of the (2’s complement) number,

e.g., 11110001 – would the formula above have to be modified?!

0 1 1 1 1 0
beginning of runend of run

middle of run

successive 1’s

bit = 2n bit = 2m

Booth from Multiply Version 3

 Modify Step 1 of the algorithm Multiply Version 3 to consider 2 bits of the
multiplier: the current bit and the bit to the right (i.e., the current bit of
the previous step). Instead of two outcomes, now there are four:

Case Current Bit Bit to the Right Explanation Example Op

1a 0 0 Middle of run of 0s 0001111000 none

1b 0 1 End of run of 1s 0001111000 add

1c 1 0 Begins run of 1s 0001111000 sub

1d 1 1 Middle of run of 1s 0001111000 none

 Modify Step 2 of Multiply Version 3 to sign extend when the product is
shifted right (arithmetic right shift, rather than logical right shift)
because the product is a signed number

 Now draw the flowchart for Booth’s algorithm !

 Multiply Version 3 and Booth share the same hardware, except Booth
requires one extra flipflop to remember the bit to the right of the current
bit in the product register – which is the bit pushed out by the preceding
right shift

Booth Example (2 x 7)

1c. 0010 1110 0111 0 shift P (sign ext)

2. 0010 1111 0011 1 11 -> nop

1d. 0010 1111 0011 1 shift P (sign ext)

2. 0010 1111 1001 1 11 -> nop

1d. 0010 1111 1001 1 shift P (sign ext)

2. 0010 1111 1100 1 01 -> add P = P + M

1b. 0010 0001 1100 1 shift P (sign ext)

2. 0010 0000 1110 0 done

Operation Multiplicand Product next?

0. initial value 0010 0000 0111 0 10 -> sub P = P - M

Booth Algorithm (2 * -3)

Operation Multiplicand Product next?

0.initial value 0010 0000 1101 0 10 -> sub P = P - M

1c. 0010 1110 1101 0 shift P (sign ext)

2. 0010 1111 0110 1 01 -> add P = P + M

1b. 0010 0001 0110 1 shift P (sign ext)

2. 0010 0000 1011 0 10 -> sub P = P - M

1c. 0010 1110 1011 0 shift P

2. 0010 1111 0101 1 11 -> nop

1d. 0010 1111 0101 1 shift P

2. 0010 1111 1010 1 done

Verifying Booth’s Algorithm

 multiplier a = a31 a32… a0, multiplicand = b

 ai ai-1 Operation

0 0 nop

0 1 add b

1 0 sub b

1 1 nop

 0, nop

I.e., if ai-1 – ai = +1, add b

–1, sub b

 Therefore, Booth computes sum:

(a–1 – a0) * b * 20

+ (a0 – a 1) * b * 21

+ (a1 – a2) * b * 22

…

+ (a30 – a31) * b * 231

= … simplify telescopic sum! …

MIPS Notes

 MIPS provides two 32-bit registers Hi and Lo to
hold a 64-bit product

 mult, multu (unsigned) put the product of two
32-bit register operands into Hi and Lo: overflow
is ignored by MIPS but can be detected by
programmer by examining contents of Hi

 mflo, mfhi moves content of Hi or Lo to a
general-purpose register

 Pseudo-instructions mul (without overflow), mulo
(with overflow), mulou (unsigned with overflow)
take three 32-bit register operands, putting the
product of two registers into the third

Divide

1001 Quotient

Divisor 1000 1001010 Dividend

–1000

10

101

1010

–1000

10 Remainder

see how big a multiple of the divisor can be subtracted, creating

quotient digit at each step

Binary makes it easy first, try 1 * divisor; if too big, 0 * divisor

Dividend = (Quotient * Divisor) + Remainder

3 versions of divide hardware & algorithm:

Divide Version 1

64-bit ALU

Control

test

Quotient

Shift left

Remainder

Write

Divisor

Shift right

64 bits

64 bits

32 bits

Done

Test Remainder

2a. Shift the Quotient register to the left,

setting the new rightmost bit to 1

3. Shift the Divisor register right 1 bit

33rd repetition?

Start

Remainder < 0

No: < 33 repetitions

Yes: 33 repetitions

2b. Restore the original value by adding

the Divisor register to the Remainder

register and place the sum in the

Remainder register. Also shift the

Quotient register to the left, setting the

new least significant bit to 0

1. Subtract the Divisor register from the

Remainder register and place the

 result in the Remainder register

Remainder > 0

–

Divisor register, remainder register, ALU are

64-bit wide; quotient register is 32-bit wide

Algorithm

32-bit divisor starts at left half of divisor register

Remainder register is initialized with the dividend at right

Why 33? We shall see later…

Quotient register is

initialized to be 0

Divide Version 1

Done

Test Remainder

2a. Shift the Quotient register to the left,

setting the new rightmost bit to 1

3. Shift the Divisor register right 1 bit

33rd repetition?

Start

Remainder < 0

No: < 33 repetitions

Yes: 33 repetitions

2b. Restore the original value by adding

the Divisor register to the Remainder

register and place the sum in the

Remainder register. Also shift the

Quotient register to the left, setting the

new least significant bit to 0

1. Subtract the Divisor register from the

Remainder register and place the

 result in the Remainder register

Remainder > 0

–

Itera- Step Quotient Divisor Remainder

tion

0 init 0000 0010 0000 0000 0111

1 1 0000 0010 0000 1110 0111

2b 0000 0010 0000 0000 0111

3 0000 0001 0000 0000 0111

2 …

3

4

5

Example: 0111 / 0010:

Algorithm

Observations on Divide Version 1

Half the bits in divisor always 0

 1/2 of 64-bit adder is wasted

 1/2 of divisor register is wasted

 Intuition: instead of shifting divisor to right, shift remainder to left…

Step 1 cannot produce a 1 in quotient bit – as all bits corresponding

to the divisor in the remainder register are 0 (remember all

operands are 32-bit)

 Intuition: switch order to shift first and then subtract – can save 1

iteration…

Divide Version 2

Control

test

Quotient

Shift left

Write

32 bits

64 bits

32 bits

Shift left

Divisor

32-bit ALU

Remainder

Divisor register, quotient register,

ALU are 32-bit wide; remainder

register is 64-bit wide

Remainder register is initialized

with the dividend at right

Algorithm
Why this correction step? We shall see later…

Done. Shift left half of Remainder right 1 bit

Test Remainder

3a. Shift the Remainder register to the
left, setting the new rightmost bit to 0.

32nd repetition?

Start

Remainder < 0

No: < 32 repetitions

Yes: 32 repetitions

3b. Restore the original value by adding
the Divisor register to the left half of the

Remainder register and place the sum
in the left half of the Remainder register.
Also shift the Remainder register to the
left, setting the new rightmost bit to 0

2. Subtract the Divisor register from the
left half of the Remainder register and
place the result in the left half of the

Remainder register

Remainder 0

1. Shift the Remainder register left 1 bit

–>

Also shift the Quotient register to the left

setting to the new rightmost bit to 1.

Also shift the Quotient register to the left

setting to the new rightmost bit to 0.

Observations on Divide Version 2

Each step the remainder register wastes space that exactly matches

the current size of the quotient

 Intuition: combine quotient register and remainder register…

Divide Version 3

Done. Shift left half of Remainder right 1 bit

Test Remainder

3a. Shift the Remainder register to the

 left, setting the new rightmost bit to 1

32nd repetition?

Start

Remainder < 0

No: < 32 repetitions

Yes: 32 repetitions

3b. Restore the original value by adding

the Divisor register to the left half of the

Remainder register and place the sum

 in the left half of the Remainder register.

Also shift the Remainder register to the

left, setting the new rightmost bit to 0

2. Subtract the Divisor register from the

left half of the Remainder register and

place the result in the left half of the

Remainder register

Remainder 0

1. Shift the Remainder register left 1 bit

–>

Write

32 bits

64 bits

Shift left

Shift right

Remainder

32-bit ALU

Divisor

Control

test

No separate quotient register; quotient

is entered on the right side of the 64-bit

remainder register
Algorithm

Remainder register is initialized with the dividend at right

Why this correction step? We shall see later…

Divide Version 3

Done. Shift left half of Remainder right 1 bit

Test Remainder

3a. Shift the Remainder register to the

 left, setting the new rightmost bit to 1

32nd repetition?

Start

Remainder < 0

No: < 32 repetitions

Yes: 32 repetitions

3b. Restore the original value by adding

the Divisor register to the left half of the

Remainder register and place the sum

 in the left half of the Remainder register.

Also shift the Remainder register to the

left, setting the new rightmost bit to 0

2. Subtract the Divisor register from the

left half of the Remainder register and

place the result in the left half of the

Remainder register

Remainder 0

1. Shift the Remainder register left 1 bit

–>

Example: 0111 / 0010:

Itera- Step Divisor Remainder

tion

0 init 0010 0000 0111

1 0010 0000 1110

1 2 0010 1110 1110

3b 0010 0001 1100

2 …

3

4

Algorithm

Number of Iterations

 Why the extra iteration in Version 1?

 Why the final correction step in Versions 2 & 3?

shift1 shift2 … shift32 shift33

sub1 sub2 sub3 … sub32 sub33

V1 starts loop

here: unnecessary

sub step

Critical situation! Only the quotient shift is

necessary as it corresponds to the

outcome of the previous sub.

So V1 is ok even though the last divisor

shift is redundant, as final divisor is ignored

any way; V2 & 3 must repair remainder

as it has shifted left one time too many

V2 & 3 start

loop here

V2 & 3 initial step:

before loop starts

One loop iteration

Ovals represent loop iterations

Shift: see the version descriptions

for which registers are shifted

Main insight – sub(i+1) must actually follow shifti of

the divisor (or remainder, depending on version) and

the resulting bit in the quotient appears on shift(i+1)

Observations on Divide Version 3

 Same hardware as Multiply Version 3

 Signed divide:

 make both divisor and dividend positive and perform division

 negate the quotient if divisor and dividend were of opposite signs

 make the sign of the remainder match that of the dividend

 this ensures always

 dividend = (quotient * divisor) + remainder

 –quotient (x/y) = quotient (–x/y) (e.g. 7 = 3*2 + 1 & –7 = –3*2 – 1)

MIPS Notes

 div (signed), divu (unsigned), with two 32-bit

register operands, divide the contents of the
operands and put remainder in Hi register and

quotient in Lo; overflow is ignored in both cases

 pseudo-instructions div (signed with overflow),

divu (unsigned without overflow) with three 32-

bit register operands puts quotients of two

registers into third

Floating Point

 We need a way to represent

 numbers with fractions, e.g., 3.1416

 very small numbers (in absolute value), e.g., .00000000023

 very large numbers (in absolute value) , e.g., –3.15576 * 1046

 Representation:

 scientific: sign, exponent, significand form:

 (–1)sign * significand * 2exponent . E.g., –101.001101 * 2111001

 more bits for significand gives more accuracy

 more bits for exponent increases range

 if 1 significand 10two(=2ten) then number is normalized, except

for number 0 which is normalized to significand 0

 E.g., –101.001101 * 2111001 = –1.01001101 * 2111011 (normalized)

binary point

IEEE 754 Floating-point Standard

 IEEE 754 floating point standard:

 single precision: one word

 double precision: two words

31

sign

bits 30 to 23

8-bit exponent

bits 22 to 0

23-bit significand

31

sign

bits 30 to 20

11-bit exponent

bits 19 to 0

upper 20 bits of 52-bit significand

bits 31 to 0

lower 32 bits of 52-bit significand

IEEE 754 Floating-point Standard

 Sign bit is 0 for positive numbers, 1 for negative numbers

 Number is assumed normalized and leading 1 bit of significand left
of binary point (for non-zero numbers) is assumed and not shown

 e.g., significand 1.1001… is represented as 1001…,

 exception is number 0 which is represented as all 0s (see next slide)

 for other numbers:

value = (–1)sign * (1 + significand) * 2exponent value

 Exponent is biased to make sorting easier

 all 0s is smallest exponent, all 1s is largest

 bias of 127 for single precision and 1023 for double precision

 therefore, for non-0 numbers:

value = (–1)sign * (1 + significand) * 2(exponent – bias)

equals exponent value

IEEE 754 Floating-point Standard

 Special treatment of 0:

 if exponent is all 0 and significand is all 0, then the value is

0 (sign bit may be 0 or 1)

 if exponent is all 0 and significand is not all 0, then the value is

(–1)sign * (1 + significand) * 2-127

 therefore, all 0s is taken to be 0 and not 2-127 (as would be for a non-zero
normalized number); similarly, 1 followed by all 0’s is taken to be 0 and not

- 2-127

 Example : Represent –0.75ten in IEEE 754 single precision

 decimal: –0.75 = –3/4 = –3/22

 binary: –11/100 = –.11 = –1.1 x 2-1

 IEEE single precision floating point exponent = bias + exponent value

= 127 + (-1) = 126ten = 01111110two

 IEEE single precision: 10111111010000000000000000000000

sign
exponent significand

Floating Point

Addition

 Algorithm:

Done

2. Add the significands

4. Round the significand to the appropriate

number of bits

Still normalized?

Start

Yes

No

No

YesOverflow or

underflow?

Exception

3. Normalize the sum, either shifting right and

incrementing the exponent or shifting left

and decrementing the exponent

1. Compare the exponents of the two numbers.

Shift the smaller number to the right until its

exponent would match the larger exponent

Floating Point

Addition

 Hardware:

0 10 1 0 1

Control

Small ALU

Big ALU

Sign Exponent Significand Sign Exponent Significand

Exponent
difference

Shift right

Shift left or right

Rounding hardware

Sign Exponent Significand

Increment or
decrement

0 10 1

Shift smaller

number right

Compare

exponents

Add

Normalize

Round

Floating Point

Multpication

 Algorithm:

2. Multiply the significands

4. Round the significand to the appropriate

number of bits

Still normalized?

Start

Yes

No

No

YesOverflow or

underflow?

Exception

3. Normalize the product if necessary, shifting

it right and incrementing the exponent

1. Add the biased exponents of the two

numbers, subtracting the bias from the sum

to get the new biased exponent

Done

5. Set the sign of the product to positive if the

signs of the original operands are the same;

if they differ make the sign negative

Floating Point Complexities

 In addition to overflow we can have underflow (number too small)

 Accuracy is the problem with both overflow and underflow because we have

only a finite number of bits to represent numbers that may actually require

arbitrarily many bits

 limited precision rounding rounding error

 IEEE 754 keeps two extra bits, guard and round

 four rounding modes

 positive divided by zero yields infinity

 zero divide by zero yields not a number

 other complexities

 Implementing the standard can be tricky

 Not implementing the standard can be even worse

 see text for discussion of Pentium bug!

MIPS Floating Point

 MIPS has a floating point coprocessor (numbered
1, SPIM) with thirty-two 32-bit registers $f0 - $f31.
Two of these are required to hold doubles.
Floating point instructions must use only even-
numbered registers (including those operating on
single floats). SPIM simulates MIPS floating point.

 Floating point arithmetic: add.s (single
addition), add.d (double addition), sub.s,
sub.d, mul.s, mul.d, div.s, div.d

 Floating point comparison: c.x.s (single), c.x.d
(double), where x may be eq, neq, lt, le, gt,
ge

 Other instructions…

Summary

 Computer arithmetic is constrained by limited
precision

 Bit patterns have no inherent meaning but standards
do exist:

 two’s complement

 IEEE 754 floating point

 Computer instructions determine meaning of the bit
patterns.

 Performance and accuracy are important so there
are many complexities in real machines (i.e.,
algorithms and implementation)

 Read Computer Arithmetic Algorithms by I. Koren

 it is easy-to-read and shows new algorithms for
arithmetic

