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The Particle Swarm Optimization (PSO) method is a well-established technique for global
optimization. During the past years several variations of the original PSO have been pro-
posed in the relevant literature. Because of the increasing necessity in global optimization
methods in almost all fields of science there is a great demand for efficient and fast imple-
mentations of relative algorithms. In this work we propose three modifications of the ori-
ginal PSO method in order to increase the speed and its efficiency that can be applied
independently in almost every PSO variant. These modifications are: (a) a new stopping
rule, (b) a similarity check and (c) a conditional application of some local search method.
The proposed were tested using three popular PSO variants and a variety test functions.
We have found that the application of these modifications resulted in significant gain in
speed and efficiency.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

The problem of locating the global minimum of a continuous and differentiable function f can be formulated as:
Determine
x� ¼ arg min
x2S
ðxÞ; ð1Þ
where the hyper box S � Rn is defined as:
S ¼ ½a1; b1� � ½a2; b2� � � � � ½an; bn�:
The above problem is applicable in many scientific fields such as chemistry [1,5,6], physics [2,4], architectural synthesis
[3], economics [7,8] etc. During the past years many methods have been proposed for tackling the problem of global opti-
mization. These methods can be divided in two main categories namely deterministic and stochastic. Methods belonging
to the first category are more difficult to implement and they depend on a priory information about the objective function.
Therefore, they are not further examined in this paper. On the other side, stochastic methods are implemented more easily
and they do not require a priory information about the objective function. Among the stochastic methods for global optimi-
zation we refer to Random Line Search [9], Adaptive Random Search [10], Competitive Evolution [11], Controlled Random
Search [12], Simulated Annealing [13–16], Genetic Algorithms [17,18], Differential Evolution [19,20], Tabu Search [21] etc.
A stochastic method for global optimization which has recently attracted considerable attention by researchers is the Particle
Swarm Optimization (PSO) algorithm. The PSO was initially suggested by Kennedy and Eberhart [22].

PSO is an evolutionary algorithm and it is based on population of candidate solutions (swarm of particles) which move in
an n-dimensional search space. Every particle i is assigned its current position xi and the so called velocity ui. The two vectors
are repeatedly updated, until a predefined convergence criterion is met (see Algorithm 1). The PSO method has been applied
. All rights reserved.

ail.com (I.G. Tsoulos).

http://dx.doi.org/10.1016/j.amc.2010.04.011
mailto:itsoulos@cs.uoi.gr
mailto:itsoulos@gmail.com
http://www.sciencedirect.com/science/journal/00963003
http://www.elsevier.com/locate/amc


I.G. Tsoulos, A. Stavrakoudis / Applied Mathematics and Computation 216 (2010) 2988–3001 2989
on a wide range of applications [23–26]. Recently many variations of the original method have been proposed in order to
increase the speed and the efficiency of the method. Some of these methods aim to develop an automatic mechanism for
the estimation of the parameters of the PSO method [27–29], while some others conjunct the PSO method with different type
of stochastic techniques [30–32].

This article proposes three modifications of the PSO method: (a) a new stopping rule, (b) a similarity check and (c) a peri-
odically application of a local optimization procedure. The generality of these modifications allows their application to any
PSO variant.

The rest of this article is organized as follows: in Section 2 a general description of a typical PSO method is given as well as
a detailed description of the proposed modifications. In Section 3 we describe the optimization problems used in our com-
parison and we give the results from the application of the proposed modifications to three PSO variants. Finally, in Section 4
a discussion is made about the experimental results.

2. Method description

In this section an outline of the general PSO method is given followed by the description of the three proposed
modifications.

2.1. Description of the PSO method

The main steps of a generic PSO algorithm are presented in Algorithm 1. In Initialization step the algorithm: (a) sets the
number of particles, (b) initializes the iteration counter and (c) assigns the initial positions (xi) of the particles and their
velocities (ui) with uniformly distributed random numbers. The vector pi holds the best visited position (the one with the
lowest function value) for the particle i and the vector pbest is the best among {p1,p2, . . .,pm}. In the Termination Check step,
the algorithm checks some predefined criteria such as the maximum number of iterations (k P kmax) or how close is the best
and the worst function values of the particles (jfmax � fminj < e,e > 0) or some other stopping rules. In step 2 the main loop of
the algorithm is performed: for every particle (a) the velocity is updated, (b) the current position is modified as a function of
its associated velocity, (c) the fitness is calculated and (d) the best position pi is updated if a better position is found. After the
main loop the best position among pi is assigned to pbest. The most common update mechanism for the current position of a
particle is given by:
xi ¼ xi þ ui; ð2Þ
where

uij ¼ xuij þ r1c1ðpij � xijÞ þ r2c2ðpbest;j � xijÞ: ð3Þ
The j parameter denotes the jth element of the vector, where j 2 [1, . . .,n]. The parameters r1 and r2are random numbers in
[0,1] and the constants c1 and c2 stands for the cognitive and the social parameters. Usually, the values for c1and c2 are in
[1,2]. The parameter x is called inertia with 0 6x 6 1. In [36] an update mechanism is proposed for the inertia following
the formula:
x ¼ xmax �
k

kmax
xmax �xminð Þ; ð4Þ
where kmax is the maximum number of iterations allowed and xmin, xmax are defined by the user. Common values for these
parameters are xmin = 0.4 and xmax = 0.9.
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Fig. 1. Plot of variance of best value for the function Rastrigin.
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Algorithm 1. The generic PSO algorithm

1. Initialization.
(a) Set k = 0 (iteration counter).
(b) Specify the parameter m (number of particles)
(c) Randomly initialize the positions of the m particles x1,x2, . . .,xm, with xi 2 S � Rn

(d) Randomly initialize the velocities of the m particles u1,u2, . . .,um, with ui 2 S � Rn

(e) For i = 1, . . .,m do pi = xi.
(f) Set pbest = arg mini 2 1, . . ., mf(xi)

2. Termination Check. If the termination criteria hold stop. The final outcome of the algorithm will be pbest
3. For i = 1, . . .,m Do

(a) Update the velocity ui

(b) Update the position xi as a function of ui, pi and pbest

(c) Evaluate the fitness of the particle i, f(xi)
(d) If f(xi) 6 f(pi) then pi = xi

4. End For
5. Set pbest = arg mini 2 1, . . ., mf(xi)
6. Set k = k + 1.
7. Goto Step 2

2.2. The proposed modifications

2.2.1. Stopping rule
The first, and probably the most essential modification, is a new stopping rule based on asymptotic considerations. Con-

sider the function Rastrigin, which is given by:
f ðxÞ ¼ x2
1 þ x2

2 � cosð18x1Þ � cosð18x2Þ:
The function has 49 local minima in the [�1,1]2 and the global minimum is located at (0,0). Now let a PSO algorithm for
the location of the global minimum of the above function with 100 particles. The algorithm terminates when k P 200, where
200 is the maximum number of iterations allowed. In Fig. 1 the variance of the function value of pbest is plotted against the
number of iterations k. As we can see, the variance decreases smoothly towards to zero. Nevertheless, the algorithm discov-
ers the global minimum at iteration 10 and the rest 190 iterations are spent in order to fulfill the termination criteria. We
propose a new stopping rule, which is based on the above variance. The new basic PSO algorithm using the proposed stop-
ping rule is displayed in Algorithm 2. As we see, at every iteration the algorithm calculates the variance (variable v) of the
best discovered value (using the auxiliary variables v1,v2) and stops when v 6 s, where s is the variance of the best value,
when a new best value was last discovered. The reasoning for this stopping rule is that, when there is no progress for a num-
ber of iterations, we could believe that we have found the global minimum and so we must stop iterating.

Algorithm 2. The basic PSO algorithm using the new stopping rule

1. Initialization.

(a) Set k = 1 (iteration counter).
(b) Specify the parameter m (number of particles)
(c) Randomly initialize the positions of the m particles x1,x2, . . .,xm, with xi 2 S � Rn

(d) Randomly initialize the velocities of the m particles u1,u2, . . .,um, with ui 2 S � Rn

(e) For i = 1, . . .,m do pi = xi.
(f) Set pbest = arg mini 2 1, . . ., mf(xi)
(g) Set v1 = 0, v2 = 0,pold = pbest

2. For i = 1, . . .,m Do
(a) Update the velocity ui

(b) Update the position xi as a function of ui, pi and pbest

(c) Evaluate the fitness of the particle i, f(xi)
(d) If f(xi) 6 f(pi) then pi = xi

3. End For
4. Termination Check Step

(a) Set pbest = arg mini 2 1, . . ., mf(xi)
(b) Set v1 ¼ v1 þ jpbestj; v2 ¼ v2 þ p2

best

(c) Set v ¼ v2
k �

v1
k

� �2

(d) If pbest – pold Then Set s ¼ v
2 ; pold ¼ pbest

(e) If v 6 s Then Stop
5. Set k = k + 1.
6. Goto Step 2.



Table 1
Variations of the implementation of the proposed PSO modifications. VN is the sequence number of variation, SR is the stopping rule as described at 2.2.1, SC is
the similarity check as described at 2.2.2 and LS is the application of local search as described at 2.2.3.

VN SR SC LS Explanation

1 + Only the stopping rule modification was applied
2 + Only the similarity check was applied
3 + + Both stopping rule and similarity check were applied
4 + + + All the proposed modifications were applied

I.G. Tsoulos, A. Stavrakoudis / Applied Mathematics and Computation 216 (2010) 2988–3001 2991
2.2.2. Similarity check

The second proposed modification is the so called similarity check. As we can see from the Algorithms 1 and 2 at

every iteration the objective function is evaluated at the point xi even though the point have remained intact during
the last iteration. These unnecessary function evaluations can be avoided by simply checking the point xi for changes,
i.e. evaluate f(xi) if and only if jxðkþ1Þ

i � xðkÞi jP e, where xðkÞi is the point xi at the k iteration and e a small positive number,
i.e. e = 10�5.
2.2.3. Application of local search
We propose as a final modification a new operator for the population of particles: at every iteration we decide to apply a

local search procedure to the members of population with probability. In order to prevent the algorithm to being trapped in
some local minima and to avoid unnecessary function calls we set this probability to pl ¼ 1

m, where m is the number of par-
ticles. The local search procedure used was a BFGS variant due to Powell [38].
2.3. Implementation

We have applied the previously described modifications of PSO method in four variations, aiming to investigate the par-
ticular influence of each one to the resulted speed and efficiency. The four variations are presented in Table 1. In the first
variation we have applied only the stopping rule as described in 2.2.1. In the second variation we have applied only the sim-
ilarity check (2.2.2). In the third variation we have applied a combined application of both stopping rule and similarity check.
Finally, in the fourth variation we have applied the local search procedure along with stopping rule and similarity check. We
have used the test functions described in Appendix A.
3. Experiments

In this section we list the results from the application of the proposed modifications to four variants of the PSO technique.
All PSO methods have been applied to a series of test problems presented in Appendix A.

3.1. PSO variants

We have tested the effect of the proposed modifications to the efficiency and the speed of the method on four PSO
variants:

1. LDWPSO: proposed by Shi and Eberhart [36], using the velocity update mechanism of Eq. (3).
2. Center PSO: proposed by Liu et al. [37], which utilizes the addition of an extra particle called Center Particle. The position

Xc of this extra particle is calculated using the formula:
Xc ¼
1
M

XM

i¼1

xi: ð5Þ
The center particle has no velocity, but it is used as an ordinary particle in every computational step of the algorithm. The
velocity update of other particles follows the mechanism of LDWPSO.
3. Simple PSO: This is a simple PSO method, that has no inertia weight in the velocity’s update rule. So, the velocity of par-

ticle i is updated using the equation:
uij ¼ r1c1ðpij � xijÞ þ r2c2ðpbest;j � xijÞ: ð6Þ
In contrast to LDWPSO and Center Pso, here the particle has no memory of the previous velocity.
4. Dynamic PSO (DPSO): This is a modified version of the PSO proposed in [39], that utilizes a different update mechanism

for the velocity of the particles.
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3.2. Experimental methodology

Four different experimental procedures as given in Table 1 have been applied in order to check the effect of the proposed
modifications in the efficiency and the speed of four PSO variants. In all four cases a local search procedure has been applied
to the best resulted particle after the satisfaction of the stopping rule. This was performed in order to guarantee that the
located point is a true local minimum. All experiments were performed 100 times on every test problem, using different seed
for the random number generator. Each PSO variant had a population of 100 particles and the maximum number of gener-
ations allowed was set to 200. The same random number set was used among the four PSO variants for each experiment. For
the cases of LDWPSO and Center PSO the velocity for each particle was bound to the limits [�uj, max,uj, max], with uj, max de-
fined by:
Table 2
Experim

PRO

CAM
RAST
GKLS
GKLS
AP
BF1
BF2
BRAN
CB3
CM
EASO
EXP8
EXP3
EXP6
GRIE
HAN
HAR
HAR
ROSE
ROSE
ROSE
SHEK
SHEK
SHEK
SHU
SINU
SINU
SINU
TEST
TEST
TEST
TEST
POTE
POTE
POW
POW
TRID
TRID
TOTA
uj;max ¼ cðaj � bjÞ; j ¼ 1; . . . ; n: ð7Þ
The parameter c for our experiments was set to 0.5. The parameters c1, c2 used in all PSO variants were set to 1. For the
case of Dynamic PSO we have used the proposed values for the constant parameters as suggested in the associate
manuscript.

3.3. Experimental results

3.3.1. Variation 1
The results from the application of the stopping rule, described at 2.2.1, to the four PSO variants are listed in Table 2. The

last row in all tables (denoted by TOTAL) is the total number of function calls for listed test problems. The numbers in paren-
theses denote the fraction of runs that located the global minimum and were not trapped in one of the local minima. Absence
of parentheses denotes that the global minimum has been recovered in every single run (100% success). Application of the
ental results for the PSO variants using only the proposed stopping rule (variation 1 of Table 1).

BLEM LDWPSO CENTER PSO SIMPLE PSO DPSO

EL 3675 3678 1573 1903
RIGIN 5398(0.96) 5335(0.96) 2211 2464(0.97)
250 3418 3445 1480 1680
350 7661(0.98) 7926(0.99) 2479(0.99) 2443(0.98)

4133 3989 1639 1922
8720(0.76) 8612(0.79) 2478 3147
9338(0.81) 9184(0.78) 2492(0.97) 3171(0.99)

IN 3366(0.96) 3335(0.96) 1859(0.99) 1803(0.94)
4572 4415 1664 1925
9918(0.99) 9808(0.99) 3056 2834(0.99)

M 881 885 858 844
10,395 9919 3176 4250

2 19,972 20,311 5124 10,280
4 18,852 20,327 5289 9392
WANK2 7469(0.87) 7949(0.87) 2746(0.88) 3160(0.97)
SEN 8885(0.99) 9130(0.99) 4406(0.98) 3819(0.99)
TMAN3 4833 4902 2448 2277
TMAN6 10,590(0.44) 10,660(0.44) 4430(0.44) 7472(0.44)
NBROCK8 18,311 19,083 7260 16,191
NBROCK32 19,508 20,556 10,520 20,319
NBROCK64 18,366 20,583 11,315 20,471
EL5 11,669(0.43) 11,682(0.43) 5037(0.43) 3895(0.45)
EL7 12,845(0.51) 13,337(0.52) 5283(0.48) 4000(0.51)
EL10 14,685(0.62) 15,186(0.63) 5328(0.49) 3703(0.45)

BERT 5958(0.94) 6055(0.94) 3879(0.98) 3058(0.99)
8 15,878(0.97) 15,065(0.97) 5524(0.94) 7859(0.93)
32 20,127(0.55) 20,324(0.86) 7625(0.95) 13,284(0.90)
64 20,227(0.14) 20,343(0.94) 11,457(0.91) 13,777(0.72)
2N4 22,263 22,423 10,677(0.90) 3563(0.67)
2N5 14,735(0.87) 14,897(0.83) 7756(0.40) 4611(0.42)
2N6 15,509(0.69) 16,151(0.67) 8264(0.33) 5876(0.33)
2N7 16,398(0.53) 17,148(0.54) 8451(0.18) 6977(0.14)
NTIAL3 7888 8184 3318 2997
NTIAL5 17,027 17,936 19,241 20,166
ER10 4712 4902 9968 4729
ER20 13,212 13,183 8151 15,285
50 16,712 20,185 12,797 20,183
100 11,974 20,468 14,534 20,229
L 439,765(0.87) 461,471(0.90) 225,793(0.88) 275,959(0.86)
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proposed stopping rule modification resulted in efficiently stopping of the algorithm in all cases. This stopping rule uses
information of the objective problem and it is more efficient than using an arbitrary number of maximum steps as a stopping
rule. Consequently, it resulted in significant acceleration of the applied method. For example, setting the maximum number
of generations to 200 instead of applying the stopping rule needed approximately 20,000 (200 generations � 100 number of
particles) function calls approximate for each optimization problem. As we can see from Table 2, in most of the cases the
required function calls were significantly lower than 20000.

The acceleration effect of the stopping rule is similar in LDWPSO, Center PSO and DPSO methods. However, in the case of
Simple PSO the application of the stopping rule resulted in dramatically decrease of function calls. For example, in the case of
Rastrigin, LDWPSO and Center PSO required more than 5000 function calls, while Simple PSO required 2211 function calls.
Moreover, in the case of Griewank2 LDWPSO and Center PSO required more than 7000 function calls, while Center PSO re-
quired 2746.

We have described here the effectiveness of the application of a modified stopping rule in four PSO methods. This stop-
ping rule which is described in 2.2.1 is entirely independent of the choice of the PSO variant as it does not use any other
information than the best located value of the target function. So it is proposed that it can in principle work in any other
PSO variant.

3.3.2. Variation 2
The results from the application of the similarity check (variation 2 of Table 1) described at 2.2.2, are listed at Table 3. As

in variation 1, the average function calls are significantly lower than 20,000 function calls required by the PSO methods. Dec-
rement of function calls ranged from approximately 40% in the cases of LDWPSO, Center PSO and DPSO to 70% in the case of
Simple PSO. The speed gain is relatively higher correspondingly to variation 1. For example, if SINU8 is to be considered, it
can be seen that the speed gain from the application of the similarity check ranges from 60% in the cases of LDWPSO and
Center PSO to 70% in the case of DPSO and more than 90% in the case of Simple PSO. The corresponding speed gain from
Table 3
Experimental results using the similarity check (variation 2 of Table 1).

PROBLEM LDWPSO CENTER PSO SIMPLE PSO DPSO

CAMEL 8502 8695 1306 1669
RASTRIGIN 7130 7333 3535 2968
GKLS250 6565 6753 888 1140
GKLS350 7028(0.98) 7205(0.99) 1058(0.99) 1280(0.98)
AP 8267 8461 1137 1566
BF1 9216 9416 1377 1890
BF2 9264 9455 1425 1904(0.99)
BRANIN 8496(0.97) 8698(0.97) 3088 2664(0.97)
CB3 7769 7963 1036 1414
CM 7223 7388 1221 1395(0.99)
EASOM 17,999 18,205 14,478 13,446
EXP8 7913 7978 1455 2278
EXP32 11,926 10,953 1818 7156
EXP64 16,458 15,332 1949 6985
GRIEWANK2 10,145 10,336 3859(0.92) 3379(0.99)
HANSEN 9858 10,076 5796(0.98) 4779
HARTMAN3 6393 6574 1005 1406
HARTMAN6 7253(0.44) 7395(0.44) 1433(0.44) 3788(0.44)
ROSENBROCK8 12,554 12,572 1995 4972
ROSENBROCK32 17,489 16,881 2477 9769
ROSENBROCK64 19,167 18,739 2744 9721
SHEKEL5 7358(0.43) 7853(0.43) 1891(0.43) 1933(0.45)
SHEKEL7 7520(0.51) 8055(0.52) 1909(0.48) 2123(0.51)
SHEKEL10 9233(0.65) 9309(0.65) 2072(0.49) 2010(0.45)
SHUBERT 9958 10,224 5838(0.99) 4510
SINU8 8088 8205 1730(0.94) 2428(0.93)
SINU32 12,739(0.55) 12,483(0.86) 2522(0.95) 8260(0.90)
SINU64 171,017(0.10) 16,998(0.93) 2727(0.91) 8411(0.72)
TEST2N4 8336(0.97) 8542(0.98) 2103(0.78) 2091(0.73)
TEST2N5 8920(0.89) 9005(0.85) 2471(0.48) 2247(0.44)
TEST2N6 9006(0.71) 9198(0.68) 2325(0.33) 2429(0.33)
TEST2N7 9195(0.55) 9349(0.55) 2284(0.18) 2593(0.15)
POTENTIAL3 10,707 10,866 7469 6652
POTENTIAL5 11,260 10,834 8237 8758
POWER10 13,308 13,494 2821 4363
POWER20 16,765 16,806 3205 8563
TRID50 20,044 20,041 3799 12,466
TRID100 20,216 20,359 4306 12,597
TOTAL 416,375(0.89) 418,029(0.92) 112,789(0.88) 178,003(0.87)
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the application of the previously analyzed variation 1 was ranged from 25% to 75%. However, the better performance of the
application of similarity check compared to the application of the stopping rule (variation 1) can not be generalized in all of
the cases. A notable exception is for example the Camel function, where the application of variation 1 resulted in less func-
tion calls.

Regarding the efficiency, the two variations do not showed notable differentiations. For example, in EXP and Rosenbrock
sets of functions both variations resulted in located the global minimum in 100% considering all PSO methods. In cases where
global minimum was not founded in all runs (Shekel, Sinu test sets) the two variations of the algorithm resulted in similar
success ratios.

The application of the similarity check (see Section 2.2.2) does not depend directly on the PSO variant. Each PSO variant
might adopt a different process for the generation of xðkÞi , where xðkÞi is the point xi at the k iteration. However, when the gen-
erated points become available, it is not effective to utilize extra function call if the xðkþ1Þ

i points are very similar to xðkÞi points.

3.3.3. Variation 3
The results from the application of both the proposed stopping rule and the similarity check for the four PSO variants are

listed in Table 4. As expected function calls are significantly lower than 20,000 calls. Moreover, the simultaneous application
of both modifications yielded in increased speed compared to variation 1 or variation 2. Decrement of function calls ranged
from approximately 60% in the cases of LDWPSO, Center PSO and DPSO to 90% in the case of Simple PSO. For example, in the
Shekel5 test case it took more than 11,000 function calls to locate the global minimum when variation 1 was applied for
LDWPSO and Center PSO methods, while similarity check needed approximately 7500 function calls. Likewise, Simple
PSO required 5500 function calls in variation 1 and 1900 function calls in variation 2. Interestingly, the combination of
the two modifications resulted in even better performance and it took only 6500 function calls for LDWPSO and Center
PSO and 1600 function calls for Simple PSO.
Table 4
Experimental results using the proposed stopping rule and the similarity check (variation 3 of Table 1).

PROBLEM LDWPSO CENTER PSO SIMPLE PSO DPSO

CAMEL 3385 3362 1033 1420
RASTRIGIN 4431(0.96) 4375(0.96) 1544 1773(0.97)
GKLS250 3167 3192 852 1106
GKLS350 5613(0.98) 5821(0.99) 1039(0.99) 1263(0.98)
AP 3968 3891 1105 1512
BF1 6086(0.76) 5987(0.79) 1364 1879
BF2 6571(0.81) 6440(0.78) 1296(0.97) 1887
BRANIN 3203(0.96) 3191(0.96) 1261(0.99) 1506(0.94)
CB3 4182 4053 995 1345
CM 6805(0.99) 6908(0.99) 1208 1383(0.99)
EASOM 875 879 850 842
EXP8 7731 7727 1443 2174
EXP32 11,824 10,953 1811 7043
EXP64 15,305 15,548 1943 7217
GRIEWANK2 6076(0.87) 6535(0.87) 2036(0.88) 2382(0.97)
HANSEN 6674(0.99) 6777(0.99) 2952(0.98) 2794(0.99)
HARTMAN3 4306 4447 988 1383
HARTMAN6 6957(0.44) 7208(0.44) 1343(0.44) 3731(0.44)
ROSENBROCK8 11,429 11,999 1989 4961
ROSENBROCK32 16,809 16,881 2472 9769
ROSENBROCK64 17,230 18,287 2739 9770
SHEKEL5 6505(0.43) 6720(0.43) 1624(0.43) 1752(0.45)
SHEKEL7 7084(0.51) 7550(0.52) 1613(0.48) 1922(0.51)
SHEKEL10 8169(0.62) 8541(0.63) 1791(0.49) 1769(0.45)
SHUBERT 4685(0.94) 4747(0.94) 2599(0.98) 2388(0.99)
SINU8 7804(0.97) 7727(0.97) 1725(0.94) 2410(0.93)
SINU32 12,739(0.55) 12,483(0.86) 2518(0.95) 8234(0.90)
SINU64 17,017(0.14) 16,998(0.94) 2725(0.91) 8050(0.72)
TEST2N4 7273 7541 1984(0.90) 1896(0.67)
TEST2N5 8412(0.87) 8513(0.83) 2214(0.40) 2155(0.42)
TEST2N6 8524(0.69) 8926(0.67) 2260(0.33) 2383(0.33)
TEST2N7 8645(0.53) 9229(0.54) 2222(0.18) 2478(0.14)
POTENTIAL3 6386 6631 2285 2377
POTENTIAL5 9689 9812 7541 8745
POWER10 4644 4782 2821 3151
POWER20 12,071 12,277 3099 8133
TRID50 16,599 19,858 3796 12,392
TRID100 11,953 20,348 4320 12,628
TOTAL 310,826(0.88) 327,144(0.91) 79,500(0.87) 150,003(0.86)
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In some cases, where one of the variations 1 and 2 did not resulted in speed gain (required function calls remained
approximately 20,000) as in SINU32 test function, the combination of stopping rule and similarity check did not perform
better than the best of the two methods. As it can be seen from Tables 3 and 4 it took approximately 20,000 for LDWPSO
and Center PSO when only stopping rule was applied and approximately 12,500 when similarity check was applied. The
combination of stopping rule and similarity check did not improve the performance so as in the similarity check case it took
approximately 12,500 function calls to locate the global minimum.

3.3.4. Variation 4
While stopping rule and similarity checked aimed mainly at improving the speed of the algorithm, local search was ap-

plied in order to enhance both the speed and the efficiency of the optimization process. As the combination of stopping rule
and similarity check gave the best results concerning the speed, we applied the local search method (the third proposed
modification) only to this algorithm variation.

Results of this algorithm variation are listed at Table 5. As it can be derived from Tables 2–4 application of local search is
needless for some particular cases, where the global minimum is found in all trials (100%). Anyway in the majority of ‘‘dif-
ficult” cases, such as SINU, HARTMAN6, TEST, SHEKEL etc., local search application greatly improves the efficiency of all PSO
methods tested. For example, global minimum of the SHEKEL5 was found approximately in 45% without local search appli-
cation. On the contrary, as it can be seen from Table 5, the efficiency of the algorithm raised the global finding percentage to
74%. Similarly, global finding was found to be only 14% for the SINU64 test problem with LDWPSO while after the application
of the local search the corresponding percentage was found to be 79%.

Interestingly, application of local search yielded in some speed enhancement. As can be derived form table average func-
tion calls were approximately 80% (LDWPSO, Center PSO, DPSO) or 90% (Simple PSO) lower than the 20,000 function calls
needed without the applied modifications. These values were found to be 40–60% with the application of algorithm vari-
ations 1, 2 and 3. One can explain this behavior if we consider the combined application of local search and stopping rule.
Table 5
Experimental results using the three proposed modifications (variation 4 of Table 1).

PROBLEM LDWPSO CENTER PSO SIMPLE PSO DPSO

CAMEL 1168 1172 954 1073
RASTRIGIN 2148(0.95) 2132(0.95) 1470(0.99) 1678(0.99)
GKLS250 1242 1238 849 1018
GKLS350 2318(0.98) 2286(0.98) 1043(0.99) 1299(0.97)
AP 1542 1522 1169 1370
BF1 5545(0.95) 5611(0.95) 1606 2194
BF2 5563(0.95) 5635(0.96) 1583 2093
BRANIN 942 949 856 902
CB3 4268 4367 984 1259
CM 4514(0.95) 4195(0.95) 1450 1777(0.99)
EASOM 807 813 793 806
EXP8 1160 1158 996 1057
EXP32 2034 1709 1190 1364
EXP64 2111 2028 1243 1413
GRIEWANK2 5535(0.76) 5362(0.76) 2129(0.92) 2607(0.95)
HANSEN 2613(0.98) 2640(0.98) 1886(0.96) 1908(0.98)
HARTMAN3 1055 1062 896 1015
HARTMAN6 1254(0.61) 1259(0.61) 1117(0.61) 1234(0.64)
ROSENBROCK8 9483 9622 1771 2297
ROSENBROCK32 15,022 15,133 2978 3659
ROSENBROCK64 20,180 20,229 4042 4791
SHEKEL5 2886(0.74) 2853(0.74) 1932(0.74) 1648(0.72)
SHEKEL7 3516(0.82) 3318(0.81) 1622(0.72) 1885(0.73)
SHEKEL10 4342(0.93) 4239(0.92) 1726(0.78) 1768(0.79)
SHUBERT 2512(0.95) 2535(0.95) 1794 1805(0.99)
SINU8 1977 1953 1233 1409
SINU32 5681(0.81) 5797(0.85) 2438(0.96) 2554(0.93)
SINU64 8911(0.79) 8536(0.94) 3554(0.88) 3481(0.80)
TEST2N4 1551(0.90) 1577(0.90) 1227(0.75) 1322(0.70)
TEST2N5 1796(0.78) 1810(0.79) 1437(0.61) 1573(0.51)
TEST2N6 2121(0.61) 2100(0.66) 1451(0.42) 1544(0.29)
TEST2N7 2539(0.51) 2511(0.51) 1446(0.12) 1634(0.13)
POTENTIAL3 1231 1238 1247 1250
POTENTIAL5 2041 2047 1943 1997
POWER10 5170 5240 3719 3979
POWER20 12,079 11,873 3619 8449
TRID50 1788 1753 1578 1727
TRID100 2084 2082 2129 2135
TOTAL 152,729(0.92) 151,584(0.93) 65,100(0.91) 76,974(0.90)
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So, if the local search helps in locating the global minimum, then the algorithm is terminated by the stopping rule, thus
there is no need to perform needles function calls inside the main loop of the algorithm just to complete a predefined um-
ber of cycles.

4. Conclusions

In this paper three modifications have been proposed in order to enhance the speed and efficiency of the PSO meth-
odology. The modifications were namely: (a) stopping rule, (b) similarity check and (c) local search. These modifications
are general enough and they can be incorporated in almost every PSO variant. A wide area of optimization problems was
tested and four different PSO methods were used. The experimental results clearly demonstrated that all three proposed
modifications enhance the speed and efficiency of PSO algorithms. Especially, the application of the stopping rule and
the similarity check variations, when applied independently, showed significant acceleration of the applied PSO methods.
The application of the similarity check showed slightly a better performance than the application of the stopping rule
variation. More interestingly, the combined application of the two proposed modifications resulted in even bigger gain
in speed. This indicates a synergistic effect on locating the global minimum. Finally, the application of the third proposed
modification, namely the local search, resulted in even better speed and significantly raised the efficiency of PSO
methods.

The superior performance of the proposed modifications of virtually any PSO methodology implies that they can be used
in many future optimization applications where speed and efficiency matters. The proposed modifications are very simple to
be implemented in almost every PSO variant.

Appendix A

For the evaluation of the proposed method a series of well - known optimization problems were utilized. These problems
can be found in [33] and in [34]. The description of the test problems is given below.

A.1. Ap function

The objective function for the problem of Alluffi–Pentiny is given by
f ðxÞ ¼ 1
4

x4
1 �

1
2

x2
1 þ

1
10

x1 þ
1
2

x2
2;
with x 2 [�10, 10]2. The value of global minimum is �0.352386.

A.2. Bf1 function

The function Bohachevsky 1 is given by the equation
f ðxÞ ¼ x2
1 þ 2x2

2 �
3

10
cosð3px1Þ �

4
10

cosð4px2Þ þ
7

10
;

with x 2 [�100, 100]2. The value of global minimum is 0.0.

A.3. Bf2 function

The function Bohachevsky 2 is given by the equation
f ðxÞ ¼ x2
1 þ 2x2

2 �
3

10
cosð3px1Þ cosð4px2Þ þ

3
10

;

with x 2 [�50, 50]2. The value of the global minimum is 0.0.

A.4. Branin function

f ðxÞ ¼ x2 � 5:1
4p2 x2

1 þ 5
p x1 � 6

� �2 þ 10 1� 1
8p

� �
cosðx1Þ þ 10 with �5 6 x1 6 10,0 6 x2 6 15. The value of global minimum is

0.397887.

A.4.1. Camel function
The function is given by
f ðxÞ ¼ 4x2
1 � 2:1x4

1 þ
1
3

x6
1 þ x1x2 � 4x2

2 þ 4x4
2; x 2 ½�5;5�2:
The global minimum has the value of f(x*) = �1.0316
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A.5. Cb3 function

The Three Hump function is given by the equation
f ðxÞ ¼ 2x2
1 � 1:05x4

1 þ
x6

1

6
þ x1x2 þ x2

2;
with x 2 [�5, 5]2. The value of the global minimum is 0.0.

A.6. Cosine mixture function (CM)

The function is given by the equation
f ðxÞ ¼
Xn

i¼1

x2
i �

1
10

Xn

i¼1

cosð5pxiÞ;
with x 2 [�1,1]n. The value of the global minimum is 0.4 and in our experiments we have used n = 4.

A.6.1. Easom function
The function is given by the equation
f ðxÞ ¼ � cosðx1Þ cosðx2Þ exp ðx2 � pÞ2 � ðx1 � pÞ2
� �

;

with x 2 [�100, 100]2. The value of the global minimum is �1.0

A.6.2. Shubert function
The function is given by f ðxÞ ¼ �

P2
i¼1

P5
j¼1jfsinððjþ 1ÞxiÞ þ 1g; x 2 ½�10; 10�2. The value of global minimum is �24.06249.

A.6.3. Exponential function
The function is given by
f ðxÞ ¼ � exp �0:5
Xn

i¼1

x2
i

 !
; �1 6 xi 6 1:
The global minimum is located at x* = (0,0, . . .,0) and �1. In our experiments we used this function with n = 8,32,64 and
they are denoted by the labels EXP8, EXP32 and EXP64.

A.6.4. Gkls function
f(x) = Gkls (x,n,w), is a function with w local minima, described in [35], x 2 [�1,1]n, n 2 [2, 100]. In our experiments we

use n = 2,3 and w = 50.

A.6.5. Griewank2 function
The function is given by
f ðxÞ ¼ 1þ 1
200

X2

i¼1

x2
i �

Y2

i¼1

cosðxiÞffiffiffiffiffiffi
ðiÞ

p ; x 2 ½�100; 100�2:
The global minimum is located at the x* = (0,0, . . .,0) with value 0.

A.7. Hansen function

f ðxÞ ¼
P5

i¼1i cos½ði� 1Þx1 þ i�
P5

j¼1j cos½ðjþ 1Þx2 þ j�; x 2 ½�10; 10�2. The global minimum of the function is �176.541793.

A.7.1. Rastrigin function
The function is given by
f ðxÞ ¼ x2
1 þ x2

2 � cosð18x1Þ � cosð18x2Þ; x 2 ½�1;1�2:
The global minimum is located at x* = (0, 0) with value �2.0.

A.7.2. Rosenbrock function
This function is given by
f ðxÞ ¼
Xn�1

i¼1

100 xiþ1 � x2
i

� �2 þ ðxi � 1Þ2
� �

; �30 6 xi 6 30:
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The global minimum is located at the x* = (0,0, . . .,0) with f(x*) = 0. In our experiments we used this function with
n = 8,32,64.

A.7.3. Sinusoidal function
The function is given by
f ðxÞ ¼ � 2:5
Yn

i¼1

sinðxi � zÞ þ
Yn

i¼1

sin 5ðxi � zÞð Þ
 !

; 0 6 xi 6 p:
The global minimum is located at x* = (2.09435,2.09435, . . .,2.09435) with f(x*) = �3.5. In our experiments we used
n = 8,32,64 and z ¼ p

6 and the corresponding functions are denoted by SINU8, SINU32, and SINU64 respectively.

A.8. Shekel 5

5

f ðxÞ ¼ �
X
i¼1

1

ðx� aiÞðx� aiÞT þ ci

;

with x 2 [0, 10]4 and
a ¼

4 4 4 4
1 1 1 1
8 8 8 8
6 6 6 6
3 7 3 7

0
BBBBBB@

1
CCCCCCA
and
c ¼

0:1
0:2
0:2
0:4
0:4

0
BBBBBB@

1
CCCCCCA
:

The function has 5 local minima in the specified range.

A.9. Shekel 7

7

f ðxÞ ¼ �
X
i¼1

1

ðx� aiÞðx� aiÞT þ ci

;

with x 2 [0, 10]4 and
a ¼

4 4 4 4
1 1 1 1
8 8 8 8
6 6 6 6
3 7 3 7
2 9 2 9
5 3 5 3

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
and
c ¼

0:1
0:2
0:2
0:4
0:4
0:6
0:3

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
:
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A.10. Shekel 10

10
f ðxÞ ¼ �
X
i¼1

1

ðx� aiÞðx� aiÞT þ ci

;

with x 2 [0, 10]4 and
a ¼

4 4 4 4
1 1 1 1
8 8 8 8
6 6 6 6
3 7 3 7
2 9 2 9
5 5 3 3
8 1 8 1
6 2 6 2
7 3:6 7 3:6

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA
and
c ¼

0:1

0:2

0:2

0:4

0:4

0:6

0:3

0:7

0:5

0:6

0
BBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCA

:

A.10.1. Test2N function
This function is given by the equation
f ðxÞ ¼ 1
2

Xn

i¼1

x4
i � 16x2

i þ 5xi; xi 2 ½�5;5�:
The function has 2n in the specified range and in our experiments we used n = 4,5,6,7

A.10.2. Potential function
The molecular conformation corresponding to the global minimum of the energy of N atoms interacting via the Lennard–

Jones potential is determined for the case of N = 3 and N = 5 atoms.

A.11. Hartman 3 function

The function is given by
f ðxÞ ¼ �
X4

i¼1

ci exp �
X3

j¼1

aijðxj � pijÞ
2

 !
;

with x 2 [0, 1]3 and
a ¼

3 10 30
0:1 10 35
3 10 30

0:1 10 35

0
BBB@

1
CCCA
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and
c ¼

1
1:2
3

3:2

0
BBB@

1
CCCA
and
p ¼

0:3689 0:117 0:2673
0:4699 0:4387 0:747
0:1091 0:8732 0:5547

0:03815 0:5743 0:8828

0
BBB@

1
CCCA:
The function has 3 minima in the specified range.

A.12. Hartman 6 function

4 6
 !
f ðxÞ ¼ �
X
i¼1

ci exp �
X
j¼1

aijðxj � pijÞ
2 ;
with x 2 [0, 1]6 and
a ¼

10 3 17 3:5 1:7 8
0:05 10 17 0:1 8 14

3 3:5 1:7 10 17 8
17 8 0:05 10 0:1 14

0
BBB@

1
CCCA;

c ¼

1
1:2
3

3:2

0
BBB@

1
CCCA;

p ¼

0:1312 0:1696 0:5569 0:0124 0:8283 0:5886
0:2329 0:4135 0:8307 0:3736 0:1004 0:9991
0:2348 0:1451 0:3522 0:2883 0:3047 0:6650
0:4047 0:8828 0:8732 0:5743 0:1091 0:0381

0
BBB@

1
CCCA:
A.13. Powersum function !2
f ðxÞ ¼
Xn

k¼1

Xn

i¼1

xk
i � bk ;
where the parameter b is chosen as
bk ¼
Xn

i¼1

zk
i

and
zi ¼
1
i
; i ¼ 1;2; . . . ;n;
with x 2 [minzi, maxzi] for i = 1,2, . . .,n The global minimum is f(x*) = 0. In our experiments we have used the values n = 10,20
(Examples POWER10, POWER20).

A.14. Trid function

Xn Xn
f ðxÞ ¼
i¼1

xi � 1ð Þ2 �
i¼2

xixi�1;
with xi 2 [�n2,n2], i = 1,2, . . .,n The global minimum is given by
f ðx�Þ ¼ �nðnþ 4Þðn� 1Þ
6

:
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