
Ειδικά Θέματα Αρχιτεκτονικής και

Προγραμματισμού Μικροεπεξεργαστών

Ενότητα 2: Απόδοση

Διδάσκων: Βαρτζιώτης Φώτιος

Τμήμα Πληροφορικής και Τηλεπικοινωνιών

Performance

 Performance is the key to understanding underlying
motivation for the hardware and its organization

 Measure, report, and summarize performance to enable
users to

 make intelligent choices

 see through the marketing hype!

 Why is some hardware better than others for different programs?

 What factors of system performance are hardware related?
(e.g., do we need a new machine, or a new operating system?)

 How does the machine's instruction set affect performance?

Computer Performance:

TIME, TIME, TIME!!!

 Response Time (elapsed time, latency):

 how long does it take for my job to run?

 how long does it take to execute (start to

finish) my job?

 how long must I wait for the database query?

 Throughput:

 how many jobs can the machine run at once?

 what is the average execution rate?

 how much work is getting done?

 If we upgrade a machine with a new processor what do we increase?

 If we add a new machine to the lab what do we increase?

Individual user
concerns…

Systems manager

concerns…

Execution Time
 Elapsed Time

 counts everything (disk and memory accesses, waiting for I/O, running other
programs, etc.) from start to finish

 a useful number, but often not good for comparison purposes

elapsed time = CPU time + wait time (I/O, other programs, etc.)

 CPU time

 doesn't count waiting for I/O or time spent running other programs

 can be divided into user CPU time and system CPU time (OS calls)

CPU time = user CPU time + system CPU time

 elapsed time = user CPU time + system CPU time + wait time

 Our focus: user CPU time (CPU execution time or, simply, execution time)

 time spent executing the lines of code that are in our program

Definition of Performance

 For some program running on machine X:

PerformanceX = 1 / Execution timeX

 X is n times faster than Y means:

PerformanceX / PerformanceY = n

Clock Cycles
 Instead of reporting execution time in seconds, we

often use cycles. In modern computers hardware
events progress cycle by cycle: in other words, each
event, e.g., multiplication, addition, etc., is a
sequence of cycles

 Clock ticks indicate start and end of cycles:

 cycle time = time between ticks = seconds per cycle

 clock rate (frequency) = cycles per second (1 Hz = 1
cycle/sec, 1 MHz = 106 cycles/sec)

 Example: A 200 Mhz clock has a
cycle time

time
cycle

ti
ck

ti
ck

Performance Equation I

 So, to improve performance one can either:

 reduce the number of cycles for a program, or

 reduce the clock cycle time, or, equivalently,

 increase the clock rate

seconds

program
=

cycles

program

seconds

cycle

CPU execution time CPU clock cycles Clock cycle time

for a program for a program
=

equivalently

How many cycles are

required for a program?

 Could assume that # of cycles = # of instructions

time1
s
t
in

s
tr

u
c
ti
o
n

2
n
d
 i
n
s
tr

u
c
ti
o
n

3
rd

 i
n

s
tr

u
c
ti
o
n

4
th

5
th

6
th ..
.

◼ This assumption is incorrect! Because:

◼ Different instructions take different amounts of time (cycles)

◼ Why…?

How many cycles are

required for a program?

 Multiplication takes more time than addition

 Floating point operations take longer than integer ones

 Accessing memory takes more time than accessing registers

 Important point: changing the cycle time often changes the

number of cycles required for various instructions because it

means changing the hardware design. More later…

time

Example

 Our favorite program runs in 10 seconds on computer
A, which has a 400Mhz clock.

 We are trying to help a computer designer build a
new machine B, that will run this program in 6
seconds. The designer can use new (or perhaps more
expensive) technology to substantially increase the
clock rate, but has informed us that this increase will
affect the rest of the CPU design, causing machine B
to require 1.2 times as many clock cycles as machine
A for the same program.

 What clock rate should we tell the designer to target?

Terminology

 A given program will require:

 some number of instructions (machine instructions)

 some number of cycles

 some number of seconds

 We have a vocabulary that relates these quantities:

 cycle time (seconds per cycle)

 clock rate (cycles per second)

 (average) CPI (cycles per instruction)

 a floating point intensive application might have a higher average CPI

 MIPS (millions of instructions per second)

 this would be higher for a program using simple instructions

Performance Measure

 Performance is determined by execution time

 Do any of these other variables equal performance?

 # of cycles to execute program?

 # of instructions in program?

 # of cycles per second?

 average # of cycles per instruction?

 average # of instructions per second?

 Common pitfall : thinking one of the variables is
indicative of performance when it really isn’t

Performance Equation II

CPU execution time Instruction count average CPI Clock cycle time

for a program for a program

 Derive the above equation from Performance Equation I

=

CPI Example I

 Suppose we have two implementations of the same
instruction set architecture (ISA). For some
program:

 machine A has a clock cycle time of 10 ns and a CPI of
2.0

 machine B has a clock cycle time of 20 ns and a CPI of
1.2

 Which machine is faster for this program, and by how
much?

 If two machines have the same ISA, which of our quantities
(e.g., clock rate, CPI, execution time, # of instructions,
MIPS) will always be identical?

CPI Example II

 A compiler designer is trying to decide between two
code sequences for a particular machine.

 Based on the hardware implementation, there are
three different classes of instructions: Class A, Class
B, and Class C, and they require 1, 2 and 3 cycles
(respectively).

 The first code sequence has 5 instructions:

2 of A, 1 of B, and 2 of C

The second sequence has 6 instructions:

4 of A, 1 of B, and 1 of C.

 Which sequence will be faster? How much? What is the
CPI for each sequence?

MIPS Example

 Two different compilers are being tested for a 500 MHz.
machine with three different classes of instructions: Class
A, Class B, and Class C, which require 1, 2 and 3 cycles
(respectively). Both compilers are used to produce code
for a large piece of software.

 Compiler 1 generates code with 5 billion Class A
instructions, 1 billion Class B instructions, and 1 billion
Class C instructions.

 Compiler 2 generates code with 10 billion Class A
instructions, 1 billion Class B instructions, and 1 billion
Class C instructions.

 Which sequence will be faster according to MIPS?

 Which sequence will be faster according to execution time?

Benchmarks

 Performance best determined by running a real application

 use programs typical of expected workload

 or, typical of expected class of applications
e.g., compilers/editors, scientific applications, graphics, etc.

 Small benchmarks

 nice for architects and designers

 easy to standardize

 can be abused!

 Benchmark suites

 Electronic Design News Embedded Microprocessor Benchmark
Consortium (or EEMBC, pronounced “embassy”) benchmarks

 Perfect Club: set of application codes

 Livermore Loops: 24 loop kernels

 Linpack: linear algebra package

 SPEC: mix of code from industry organization

SPEC (System Performance

Evaluation Corporation)

 Sponsored by industry but independent and self-

managed – trusted by code developers and

machine vendors

 Clear guides for testing, see www.spec.org

 Regular updates (benchmarks are dropped and

new ones added periodically according to

relevance)

 Specialized benchmarks for particular classes of

applications

 Can still be abused…, by selective optimization!

http://www.spec.org/

SPEC History

 First Round: SPEC CPU89

 10 programs yielding a single number

 Second Round: SPEC CPU92

 SPEC CINT92 (6 integer programs) and SPEC CFP92 (14
floating point programs)

 compiler flags can be set differently for different
programs

 Third Round: SPEC CPU95

 new set of programs: SPEC CINT95 (8 integer programs)
and SPEC CFP95 (10 floating point)

 single flag setting for all programs

 Fourth Round: SPEC CPU2000

 new set of programs: SPEC CINT2000 (12 integer
programs) and SPEC CFP2000 (14 floating point)

 single flag setting for all programs

 programs in C, C++, Fortran 77, and Fortran 90

CINT2000 (Integer component

of SPEC CPU2000)

Program Language What It Is

164.gzip C Compression

175.vpr C FPGA Circuit Placement and Routing

176.gcc C C Programming Language Compiler

181.mcf C Combinatorial Optimization

186.crafty C Game Playing: Chess

197.parser C Word Processing

252.eon C++ Computer Visualization

253.perlbmk C PERL Programming Language

254.gap C Group Theory, Interpreter

255.vortex C Object-oriented Database

256.bzip2 C Compression

300.twolf C Place and Route Simulator

CFP2000 (Floating point

component of SPEC CPU2000)

Program Language What It Is

168.wupwise Fortran 77 Physics / Quantum Chromodynamics

171.swim Fortran 77 Shallow Water Modeling

172.mgrid Fortran 77 Multi-grid Solver: 3D Potential Field

173.applu Fortran 77 Parabolic / Elliptic Differential Equations

177.mesa C 3-D Graphics Library

178.galgel Fortran 90 Computational Fluid Dynamics

179.art C Image Recognition / Neural Networks

183.equake C Seismic Wave Propagation Simulation

187.facerec Fortran 90 Image Processing: Face Recognition

188.ammp C Computational Chemistry

189.lucas Fortran 90 Number Theory / Primality Testing

191.fma3d Fortran 90 Finite-element Crash Simulation

200.sixtrack Fortran 77 High Energy Physics Accelerator Design

301.apsi Fortran 77 Meteorology: Pollutant Distribution

SPEC- Single number result -

How

SPEC- Single number result

SPEC- Single number result -

How

SPEC- Single number result -

How

SPEC- Single number result -

How

SPEC CPU2000 reporting

 Refer SPEC website www.spec.org for

documentation

 Single number result – geometric mean of

normalized ratios for each code in the suite

 Report precise description of machine

 Report compiler flag setting

http://www.spec.org/

Specialized SPEC Benchmarks

 I/O

 Network

 Graphics

 Java

 Web server

 Transaction processing (databases)

Principles of Computer Design

 Take Advantage of Parallelism

 e.g. multiple processors, disks, memory banks, pipelining,
multiple functional units

 Principle of Locality

 Reuse of data and instructions

 90 -10 rule: 90% of execution time spent running 10% of
instructions

 programs access data in nearby addresses

 Focus on the Common Case!!!

 Amdahl’s Law

Amdahl's Law

 Execution Time After Improvement =

Execution Time Unaffected + (Execution Time Affected / Rate of
Improvement)

 Example:

 Suppose a program runs in 100 seconds on a machine, with
multiply responsible for 80 seconds of this time.

 How much do we have to improve the speed of multiplication if we
want the program to run 4 times faster?

 How about making it 5 times faster?

 Design Principle: Make the common case fast

Improved part of code

Amdahl's Law

Speedupoverall =
ExTimeold

ExTimenew

 =
1

1- Fractionenhanced() +
Fractionenhanced

Speedupenhanced

Best you could ever hope to get:

Speedupmaximum =
1

1 - Fractionenhanced()

ExTimenew = ExTimeold ´ 1- Fractionenhanced() +
Fractionenhanced

Speedupenhanced

é

ë
ê

ù

û
ú

F=0.1 => S ~= 1.1

F=0.5 => S = 2

F=0.9 => S = 10

Examples
 Suppose we enhance a machine making all floating-

point instructions run five times faster. The
execution time of some benchmark before the
floating-point enhancement is 10 seconds.

 What will the speedup be if half of the 10 seconds is spent
executing floating-point instructions?

 We are looking for a benchmark to show off the new
floating-point unit described above, and want the
overall benchmark to show a speedup of 3. One
benchmark we are considering runs for 100 seconds
with the old floating-point hardware.

 How much of the execution time would floating-point
instructions have to account for in this program in order to
yield our desired speedup on this benchmark?

Performance Summary

 Performance is specific to a particular program

 total execution time is a consistent summary of
performance

 For a given architecture performance increases come

from:

 increases in clock rate (without adverse CPI affects)

 improvements in processor organization that lower CPI

 compiler enhancements that lower CPI and/or
instruction count

 Pitfall: expecting improvement in one aspect of a

machine’s performance to affect the total

performance

Power and Energy

 Problem: Get power in, get power out

 Thermal Design Power (TDP)

 Characterizes sustained power consumption

 Used as target for power supply and cooling system

 Lower than peak power, higher than average power

consumption

 Envelop?

 Clock rate can be reduced dynamically to limit power

consumption

 Energy per task is often a better measurement

Dynamic Energy and Power

 Dynamic energy

 Transistor switch from 0 -> 1 or 1 -> 0

 f x Capacitive load x Voltage2

 f is activity factor

 For f= ½ we get ½ x Capacitive load x Voltage2

 Typical assumption for activity factor is ½

 Dynamic power

 ½ x Capacitive load x Voltage2 x Frequency switched

 Again, assumes activity factor is ½

 Reducing clock rate reduces power, not energy

Reducing Power

 Techniques for reducing power:

 Dynamic Voltage Scaling (DVS)

 Dynamic Frequency Scaling (DFS)

 Dynamic Voltage-Frequency Scaling (DVFS)

 Low power state for DRAM, disks

 Sleep modes

Static Power

 Static power consumption

 Currentstatic x Voltage

 Scales with number of transistors

 To reduce: power gating

 The new primary evaluation for design innovation

 Tasks per joule

 Performance per watt (joules /sec)

Dependability
 Systems alternate between two states of service with

respect to Service Level Agreements/Objectives (SLA/SLO):

 Service accomplishment, where service is delivered as
specified by SLA

 Service interruption, where the delivered service is different
from the SLA

 Module reliability:

 Mean time to failure (MTTF)

 Failures in Time - per billion hours (FIT) = 109/ MTTF

 Mean time to repair (MTTR)

 Mean time between failures (MTBF) = MTTF + MTTR

 Availability = MTTF / MTBF

Dependability - Example
 Assume a disk subsystem with the

following components and MTTF:

 10 disks, each rated at 1,000,000-

hour MTTF

 1 ATA controller, 500,000-hour MTTF

 1 power supply, 200,000-hour MTTF

 1 fan, 200,000-hour MTTF

 1 ATA cable, 1,000,000-hour MTTF

Using the simplifying assumptions that the

lifetimes are exponentially distributed

and that failures are independent,

compute the MTTF of the system as a

whole.

or just under 5 years

Integrated Circuit Cost

 Integrated circuit

 Defects per unit area = 0.016-0.057 defects per square
cm (2010)

 N = process-complexity factor = 11.5-15.5 (40 nm, 2010)

 The manufacturing process dictates the wafer cost,
wafer yield and defects per unit area

 The architect’s design affects the die area, which in
turn affects the defects and cost per die

Integrated Circuit Cost -

Example

 Find the number of dies per 300 mm (30 cm) wafer for a

die that is 1.5 cm on a side and for a die that is 1.0 cm

on a side.

 Find the die yield for dies that are 1.5 cm on a side and

1.0 cm on a side, assuming a defect density of 0.031 per

cm2 and N is 13.5.

 Processing of a 300 mm (12-inch) diameter wafer in a

leading-edge technology cost between $5000 and $6000

in 2010. Find the cost of die for dies that are 1.5 cm on

a side and 1.0 cm on a side, assuming a processed wafer

cost of $5500.

